Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e30765, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38765064

RESUMO

Light-driven water splitting has gained increasing attention as an eco-friendly method for hydrogen production. There is a pressing need to enhance the performance of catalysts for the commercial viability of this reaction. Many methods have been proposed to improve catalyst performance; however, an economical and straightforward approach remains a priority. This paper presents an uncomplicated technique called acid treatment, which augments the catalytic performance of nanoparticles. The method promotes a change in the catalytic reactivity by causing a deficit in electron density of Ti and O on the surface of TiO2 nanoparticles without altering their size, morphology, or crystal structure. In the Eosin Y sensitized photocatalytic hydrogen production system, nitric acid treated TiO2 (16.95 µmol/g) exhibited 1.5 times the hydrogen production compared to bare TiO2 (11.15 µmol/g).

2.
Adv Healthc Mater ; 12(26): e2300889, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37337388

RESUMO

The coronavirus pandemic has accelerated the development of next-generation vaccination technology to combat future pandemic outbreaks. Mucosal vaccination effectively protects the mucosal surfaces, the primary sites of viral entry, by inducing the secretion of immunoglobulin A (IgA) and humoral IgG. Here, a dissolving microneedle (DMN) is adopted as a mucosal vaccine delivery platform to directly penetrate the sublingual site, which is rich in antigen-presenting cells (APCs) and lymphoid tissues. The sublingual dissolving microneedle (SLDMN) vaccination platform comprised a micropillar-based compartment and a 3D-printed SLDMN applicator as a substitute for the DMN patch. The penetration efficacy of SLDMNs is assessed using in vitro optical coherence tomography (OCT) and in vivo histological analysis. The efficacy of SLDMN is also evaluated in a vaccine form using the recombinant spike (S1) protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furthermore, SLDMN is used to challenge transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) receptors. Its effects are evaluated on antibody production, survival rate, and inflammation attenuation after infection compared to the intramuscular (IM) injections. Overall, SLDMN effectively induced mucosal immunity via IgA secretion, attenuated lung inflammation, and lowered the levels of cytokines and chemokines, which may prevent the "cytokine storm" after SARS-CoV-2 infection.


Assuntos
COVID-19 , Vacinas Virais , Camundongos , Animais , Humanos , SARS-CoV-2 , Anticorpos Antivirais , Imunidade nas Mucosas , COVID-19/prevenção & controle , Imunoglobulina A/análise
3.
Lab Chip ; 23(10): 2378-2388, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-36919574

RESUMO

Obesity is a chronic metabolic disease that is prevalent worldwide, causing complications that affect the quality of life and longevity of humans. Currently, the low bioavailability upon subcutaneous injection of an appetite suppressant, liraglutide, and health problems in the locally injected region remain to be overcome. In this study, we developed a novel hyaluronic acid-based liraglutide-encapsulated triple-layer microneedle (TLM) as a painless and patient-friendly long-term drug delivery system. In contrast to previous anti-obesity microneedle approaches, this TLM is composed of three layers for complete skin insertion, protecting the encapsulated liraglutide from environmental stresses. Daily topical application of the liraglutide-loaded TLM significantly reduced body weight and improved body composition in a mouse model of high-fat diet-induced obesity. Additionally, it ameliorated diet-induced hepatic steatosis in obese mice. This novel TLM could promote a glucagon-like peptide-1 drug release system for long-term daily administration with relatively higher patient compliance compared to subcutaneous injection.


Assuntos
Ácido Hialurônico , Liraglutida , Camundongos , Animais , Humanos , Liraglutida/uso terapêutico , Liraglutida/farmacologia , Ácido Hialurônico/uso terapêutico , Qualidade de Vida , Obesidade/tratamento farmacológico , Dieta Hiperlipídica
4.
Acta Biomater ; 160: 112-122, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764594

RESUMO

Dissolving microneedles (DMNs), despite their minimally invasive drug administration, face challenges in skin insertion and drug-loading capacity, which lead to less effective drug delivery. The micro-pillar tunnel stamp (MPTS) was designed to enhance the transdermal delivery efficacy of externally provided topical formulations via the creation of microchannels. The tunnel and canal of the MPTS enable the simultaneous application of DMNs and topical drugs. The application of micro-pillar-polycaprolactone (MP-PCL), which is a DMN made of a slowly dissolving polymer, exhibited a drug permeation rate 1.3-fold and 2.6-fold higher than that of micro-pillar-hyaluronic acid (MP-HA), a DMN made of a rapidly dissolving polymer, and the topical group, respectively. The base diameter of MP-PCL was set to 700 µm for maximized delivery efficacy, achieving 2.8-fold higher L-ascorbic acid accumulation than that of the topical group. In vivo analysis showed that, compared to topical administration, MPTS-delivered lidocaine had 5-fold greater permeation and the MPTS-delivered group showed 1.25-fold higher skin residual amount, confirming enhanced delivery. Thus, the optimized MPTS system can be presented as an attractive alternative to overcome the limitations of the existing MN systems such as incomplete insertion and limited drug-loading capacity, enhancing the delivery of topical formulations in the transdermal market. STATEMENT OF SIGNIFICANCE: We developed a micro-pillar tunnel stamp (MPTS) to enhance the delivery of externally provided topical formulations. The functional tunnel and canal of the MPTS enabled the simultaneous application of a dissolving microneedle (DMN) array insertion and administration of external topical drugs. Upon insertion, the DMNs created skin microchannels that allowed the externally administered drug to diffuse. DMNs were fabricated using polycaprolactone (PCL), a slowly dissolving polymer, to maintain their structure inside the skin and prolong the opening duration of the microchannels. This system achieved significantly improved delivery of topically administered external drugs via integration with slowly dissolving DMNs, while offering the possibility of its development as a universal delivery system for various topical pharmaceuticals.


Assuntos
Sistemas de Liberação de Medicamentos , Pele , Composição de Medicamentos , Administração Cutânea , Polímeros/química , Agulhas
5.
Adv Healthc Mater ; 12(9): e2202473, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36617627

RESUMO

Liraglutide, a human glucagon-like peptide-1 (GLP-1) analog, is promising for safely treating type 2 diabetes mellitus (T2DM), compared to insulin, by significantly reducing the risk of glucose-dependent hypoglycemia. Concerns related to injection prevent T2DM patients from taking liraglutide regularly, even though once-a-day subcutaneous (SC) injections. Dissolving microneedles (DMNs) are promising substitutes for SC injection and for improving patient convenience. However, there are two fundamental limitations: the low drug delivery due to incomplete insertion and loss of drug activity during DMN fabrication. Here, it is shown that an egg microneedle (EMN) designed with three functional layered structures can maintain the maximum activity of the loaded compound during DMN fabrication and deliver it completely into the skin, with the base layer allowing the complete delivery of liraglutide, and the shell layer maintaining the drug activity by mimicking the role of albumin in eggs. In a diabetic mouse model, liraglutide administration via EMN exhibited similar effect when compared to that of injection. Therefore, EMN-mediated liraglutide administration is a good potential option for replacing liraglutide injections in T2DM treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Liraglutida , Camundongos , Animais , Humanos , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Administração Cutânea , Pele , Peptídeo 1 Semelhante ao Glucagon
6.
Biomater Res ; 26(1): 53, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199121

RESUMO

BACKGROUND: Dissolving microneedle (DMN) is a transdermal drug delivery system that creates pore in the skin and directly deliver drug through the pore channel. DMN is considered as one of the promising system alternatives to injection because it is minimally invasive and free from needle-related issues. However, traditional DMN patch system has limitations of incomplete insertion and need of complex external devices. Here, we designed film-trigger applicator (FTA) system that successfully delivered DMN inside the skin layers using fracture energy of carboxymethyl cellulose (CMC) film via micropillars. We highlighted advantages of FTA system in DMN delivery compared with DMN patch, including that the film itself can act as DMN applicator. METHODS: FTA system consists of DMNs fabricated on the CMC film, DMN array holder having holes aligned to DMN array, and micropillars prepared using general purpose polystyrene. We analyzed punching force on the film by micropillars until the film puncture point at different CMC film concentrations and micropillar diameters. We also compared drug delivery efficiency using rhodamine B fluorescence diffusion and skin penetration using optical coherence tomography (OCT) of FTA with those of conventional DMN patch. In vivo experiments were conducted to evaluate DMN delivery efficiency using C57BL/6 mice and insulin as a model drug. RESULTS: FTA system showed enhanced delivery efficiency compared with that of the existing DMN patch system. We concluded CMC film as a successful DMN applicator as it showed enhanced DMN penetration in OCT and rhodamine B diffusion studies. Further, we applied FTA on shaved mouse dorsal skin and observed successful skin penetration. The FTA group showed higher level of plasma insulin in vivo than that of the DMN patch group. CONCLUSIONS: FTA system consisting of simple polymer film and micropillars showed enhanced DMN delivery than that of the existing DMN patch system. Because FTA works with simple finger force without sticky patch and external devices, FTA is a novel and promising platform to overcome the limitations of conventional microneedle patch delivery system; we suggest FTA as a next generation applicator for microneedle application in the future.

7.
Pharmaceutics ; 13(7)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371749

RESUMO

Dissolving microneedles (DMNs) have been used as an alternative drug delivery system to deliver therapeutics across the skin barrier in a painless manner. In this study, we propose a novel heat-melting method for the fabrication of hydrophobic poly(lactic-co-glycolic acid) (PLGA) DMNs, without the use of potentially harmful organic solvents. The drug-loaded PLGA mixture, which consisted of a middle layer of the DMN, was optimized and successfully implanted into ex vivo porcine skin. Implanted HMP-DMNs separated from the patch within 10 min, enhancing user compliance, and the encapsulated molecules were released for nearly 4 weeks thereafter. In conclusion, the geometry of HMP-DMNs was successfully optimized for safe and effective transdermal sustained drug delivery without the use of organic solvents. This study provides a strategy for the innovative utilization of PLGA as a material for transdermal drug delivery systems.

8.
Micromachines (Basel) ; 12(2)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567577

RESUMO

(1) Background: Dissolving microneedles (DMNs), a transdermal drug delivery system, have been developed to treat various diseases in a minimally invasive, painless manner. However, the currently available DMNs are based on burst release systems due to their hydrophilic backbone polymer. Although hydrophobic biodegradable polymers have been employed on DMNs for sustained release, dissolution in an organic solvent is required for fabrication of such DMNs. (2) Method: To overcome the aforementioned limitation, novel separable polycaprolactone (PCL) DMNs (SPCL-DMNs) were developed to implant a PCL-encapsulated drug into the skin. PCL is highly hydrophobic, degrades over a long time, and has a low melting point. Under thermal melting, PCL encapsulated capsaicin and could be fabricated into a DMN without the risk of toxicity from an organic solvent. (3) Results: Optimized SPCL-DMNs, containing PCL (height 498.3 ± 5.8 µm) encapsulating 86.66 ± 1.13 µg capsaicin with a 10% (w/v) polyvinyl alcohol and 20% (w/v) polyvinylpyrrolidone mixture as a base polymer, were generated. Assessment of the drug release profile revealed that this system could sustainably release capsaicin for 15 days from PCL being implanted in porcine skin. (4) Conclusion: The implantable SPCL-DMN developed here has the potential for future development of toxicity-free, sustained release DMNs.

9.
Pharmaceutics ; 12(11)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182374

RESUMO

Lidocaine is a local anesthetic agent used in the form of injection and topical cream. However, these formulation types have limitations of being either painful or slow-acting, thereby hindering effective and complete clinical performance of lidocaine. Dissolving microneedles (DMNs) are used to overcome these limitations owing to their fast onset time and minimally invasive administration methods. Using hyaluronic acid and lidocaine to produce the drug solution, a lidocaine HCl encapsulated DMN (Li-DMN) was fabricated by centrifugal lithography. The drug delivery rate and local anesthetic quality of Li-DMNs were evaluated using the pig cadaver insertion test and Von Frey behavior test. Results showed that Li-DMNs could deliver sufficient lidocaine for anesthesia that is required to be utilized for clinical level. Results from the von Frey test showed that the anesthetic effect of Li-DMNs was observed within 10 min after administration, thus confirming fast onset time. A toxicity test for appropriate clinical application standard was conducted with a microbial limit test and an animal skin irritation test, showing absence of skin irritation and irritation-related microorganisms. Overall, Li-DMN is a possible alternative drug delivery method for local anesthesia, meeting the requirements for clinical conditions and overcoming the drawbacks of other conventional lidocaine administration methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...