Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 356: 124250, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38810685

RESUMO

Biochar was generally used to reduce the macronutrient releases and to mitigate N2O gas emissions in cropland. This experiment evaluated the trend of major plant nutrient releases using the modified Hyperbola model and the greenhouse gas emissions by incorporating different poultry manure compost biochar with organic resources. The treatments consisted of the control as the organic fertilizer materials, the incorporated poultry manure compost biochar with organic fertilizer materials (PMCBF), and the incorporated plasma-activated poultry manure compost biochar with organic fertilizer materials (PAMBF) under redox conditions. The results showed that the cumulated highest concentrations of NH4-N and NO3-N were 2168.6 mg L-1 and 21.7 mg L-1 in the control, respectively. Compared with the control, the predicted reduction rates of NH4-N release from the PMCBF and PAMBF were 26.2% and 15.4%, respectively. In the control, the cumulated highest concentrations of PO4-P and K in leachate were 681.04 mg L-1 and 120.5 mg L-1, respectively. The predicted reduction rates of PO4-P and K were 55.1% and 15.5%, respectively, under the PAMBF compared to the control. The modified Hyperbola model with cumulated NH4-N, PO4-P, and K-releases under the treatments was a good fit (p < 0.0001). For greenhouse gas (GHG) emissions, the lowest cumulative N2O was 59.59 mg m-2 in the soil incorporated with PMCBF, and its reduction rate was 23.5% compared with the control. The findings of this study will contribute to more profound insights into the potential application of PAMBF and PMCBF as bio-fertilizers adapted to mitigate NH4-N, PO4-P, and K releases and N2O emissions, offering scientific evidence for organic farming strategies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36231705

RESUMO

For this experiment, pelletized activated biochar made of rice hullsor palm bark with swine manure compost was prepared to demonstrate the significant benefits of applying activated biochar-manure compost pellet fertilizer (ABMCP) inmitigating volatile organic compounds (VOCs), odor emission, and heavy metal saturation. Morphology and surface area analysis indicated that the activated rice hull biochar-manure compost pellet (ARP) had a significantly lower surface area, porous volume, and Fe content the activated palm biochar-manure compost pellet (APP). However, the ARP presented great potential to mitigate VOCs and odorant emissions. Our results indicated that the ARP reduced total reduced sulfur (TRS) and volatile fatty acids (VFAs) emissions by 69% and 93%, respectively. Heavy metals such as Pb, As, and Cd were not detected in the leachates fromthe ARP, APP, and swine manure compost. These results suggest that ABMCP can be a potential adsorbent to control VOCs and odorant emissions andpromote sustainable swine manure management and agricultural application.


Assuntos
Compostagem , Metais Pesados , Compostos Orgânicos Voláteis , Animais , Cádmio , Carvão Vegetal , Fertilizantes , Chumbo , Esterco , Metais Pesados/análise , Solo , Enxofre , Suínos
3.
Environ Pollut ; 285: 117457, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34380210

RESUMO

Supplemental activated biochar pellet fertilizers (ABPFs) were evaluated as a method to sequester carbon and reduce greenhouse gas (GHG) emissions, and improve rice production. The evaluated treatments were a control (standard cultivation method, no additives applied), activated rice hull biochar pellets with 40% of N (ARHBP-40%), and activated palm biochar pellets with 40% of N (APBP-40%). The N supplied by the ARHBP-40% and APBP-40% treatments reduced the need for supplemental inorganic nitrogen (N) fertilizer by 60 percent. The ARHBP-40% treatment sequestered as much as 1.23 tonne ha-1 compared to 0.89 tonne ha-1 in the control during the rice-growing season. In terms of greenhouse gas (GHG) emissions, CH4 emissions were not significantly different (p > 0.05) between the control and the ARHBP-40%, while the lowest N2O emissions (0.002 kg ha-1) were observed in the ARHBP-40% during the crop season. Additionally, GHG (CO2-equiv.) emissions from the ARHBP-40% application were reduced by 10 kg ha-1 compared to the control. Plant height in the control was relatively high compared to others, but grain yield was not significantly different among the treatments. The application of the ARHBP-40% can mitigate greenhouse gas emissions and enhance carbon sequestration in crop fields, and ABPFs can increase N use efficiency and contribute to sustainable agriculture.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura , Sequestro de Carbono , Carvão Vegetal , Fertilizantes/análise , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Solo
4.
Chemosphere ; 283: 131129, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34153920

RESUMO

Because of rapid development in the livestock industry, the production of chicken manure has subsequently increased, which may contribute to environmental pollution. In this regard, in-vessel composting of biochar amended chicken manure and sawdust mixtures was investigated to find out the effect of biochar at the ratios of 0% (control), 3% (T1), 5% (T2), and 10% (T3) on ammonia and greenhouse gases (GHGs) emission, compost quality, pathogenic contaminants and phytotoxicity. The composting process was performed in 100-L, pilot-scale, plastic, cylindrical vessels for 50 days. The addition of biochar (3%, 5%, and 10%) increased the thermophilic temperature with a significant reduction in gaseous emissions (ammonia and CO2), microbial pathogens (Escherichia coli and Salmonella sp.), and phytotoxicity (Lepidium sativum seed germination assay) compared with that of the control compost products. However, according to the obtained results with in-vessel composting, the amendment of 10% biochar showed the most significant effects concerning the quality of the compost nutrients. The study reveals that the addition of biochar during in-vessel chicken manure composting is beneficial in the reduction of gaseous emissions and pathogenic microorganisms apart from improvement in plant nutrients.


Assuntos
Compostagem , Esterco , Animais , Carvão Vegetal , Galinhas , Gases , Nitrogênio/análise , Solo
5.
J Environ Manage ; 244: 92-98, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31108315

RESUMO

The application of biochar pellet blended with pig manure compost was investigated to estimate its agro-environmental impacts and to evaluate its soil carbon sequestration and profit analysis during rice cultivation. The experiment consisted of four different treatments such as control as pig manure compost only, pig manure compost pellet (PMCP), biochar pellet blended with biochar and pig manure compost (4: 6 ratios, BCP), and slow release fertilizer (SRF). The application of chemical fertilizer and pig manure compost in the whole treatment except the BCP were 90-45-57 kg ha-1 (N-P-K) and 2600 kg ha-1, respectively, based on the recommended rates for rice cultivation at National Institute of Agricultural Sciences (NIAS). The BCP and SRF were applied with N 90 kg ha-1 basis only as basal application before transplanting. The pig manure compost, phosphorous and potassium were applied at basal application while nitrogen fertilizer was applied with three separations as basal and two additional applications. Results showed that concentrations of ammonium nitrogen (NH4-N) and nitrate nitrogen (NO3-N) in the BCP at an early stage of rice growth were lowest among the treatments, but their concentrations in the paddy water rapidly decreased at 21 days after transplanting. For paddy soil, NH4-N concentration in the SRF was continuously high compared to the BCP until 20 days of rice cultivation. For paddy water, phosphate phosphorous (PO4-P) concentrations in the BCP were three fold lower than the SRF at an early stage of rice growth. Similar pattern between potassium (K) concentrations in paddy water and potassium oxide (K2O) contents in surface soil was also observed during rice cultivation where their concentrations decreased abruptly 41 days after transplanting. Carbon sequestration and mitigation of carbon dioxide equivalency (CO2-eq.) emission in the BCP were higher at 1.65 tons ha-1 and 6.06 tons ha-1, respectively, than the control while result of its profit analysis was $145.59 (KAU, Korean Allowance Unit) per hectare during rice cultivation. The rice yield were not significantly different (p > 0.05) among all treatments.


Assuntos
Oryza , Solo , Animais , Sequestro de Carbono , Carvão Vegetal , Fertilizantes , Esterco , Suínos , Água
6.
J Environ Manage ; 232: 592-599, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30517840

RESUMO

Excessive nutrients and toxic gas emissions from animal manure management are of great global concern, with negative environmental and economic consequences worldwide. Due to biochar recalcitrance and sorption properties, this study investigated the effect of the biochar(BC) derived from bamboo, amendment on swine manure(SM) composting efficiency through physical, physio-chemical, gaseous emissions, microbiological, and phytotoxic analysis during the 56 day process of in-vessel composting. The treatments were set-up from different ratios of biochar to swine manure mixed with sawdust(SD)(i.e. SM + SD + 3%BC(T1), SM:SD + 5 %BC(T2) and SM:SD + 10 %BC (T3)), while treatment without biochar amendment was used as a control, SM:SD(C). The results showed that, compared to the control, biochar amended compost mixtures had significantly reduced (p ≤ 0.05) bulk density, organic matter(OM), C:N ratio, NH3 emission, pathogenic microorganisms, and phytotoxicity effect (Cress seed, Lepidium sativum Linn.). On the other hand, biochar amendment mixtures had increased total porosity, water holding capacity, rapid thermophilic temperature, and nitrate nitrogen. However, with the most prominent effects in terms of the nutrient quality and degradation rate of compost mixtures, the amendment of 10% biochar is recommended for swine manure management through the composting process.


Assuntos
Compostagem , Microbiota , Animais , Carvão Vegetal , Esterco , Nitrogênio , Solo , Suínos
7.
Sensors (Basel) ; 12(12): 16892-906, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23223148

RESUMO

Sewer odors have been a concern to citizens of the Metropolitan Seoul region, which has installed combined sewer systems (CSSs) in 86% of its area. Although a variety of odorants are released from sewers, volatile sulfur compounds (VSCs) have been recognized as major ones. A number of technologies have been proposed to monitor or control odors from sewers. One of the most popular strategies adopted for the control of sewage odor is by applying a commercial odor-reducing agent into the sewer. In this study, the effectiveness of five different commercial odor-reducing agents (i.e., an odor masking agent, an alkaline solution, two microbial agents, and a chemical oxidant) was evaluated by continuously monitoring VSCs released from the sewer with an on-line total reduced sulfur (TRS) analyzer before and after each agent was sprayed into CSSs at five different locations of the city. In short, when the effectiveness of odor treatment was tested in the sewer system using five commercial odor reducing treatments, only the chemical oxidant was good enough to reduce the odor in terms of TRS levels measured before and after the application (p < 0.01).


Assuntos
Odorantes/análise , Esgotos/química , Enxofre/isolamento & purificação , Humanos , Sulfeto de Hidrogênio/química , Substâncias Redutoras/química , Eliminação de Resíduos Líquidos/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...