Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(10): 8390-8396, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38406868

RESUMO

The realization of quantum advantage with noisy-intermediate-scale quantum (NISQ) machines has become one of the major challenges in computational sciences. Maintaining coherence of a physical system with more than ten qubits is a critical challenge that motivates research on compact system representations to reduce algorithm complexity. Toward this end, the variational quantum eigensolver (VQE) used to perform quantum simulations is considered to be one of the most promising algorithms for quantum chemistry in the NISQ era. We investigate reduced mapping of one spatial orbital to a single qubit to analyze the ground state energy in a way that the Pauli operators of qubits are mapped to the creation/annihilation of singlet pairs of electrons. To include the effect of non-bosonic (or non-paired) excitations, we introduce a simple correction scheme in the electron correlation model approximated by the geometrical mean of the bosonic (or paired) terms. Employing it in a VQE algorithm, we assess ground state energies of H2O, N2, and Li2O in good agreement with full configuration interaction (FCI) models respectively, using only 6, 8, and 12 qubits with quantum gate depths proportional to the squares of the qubit counts. With the adopted seniority-zero approximation that uses only one half of the qubit counts of a conventional VQE algorithm, we find that our non-bosonic correction method reaches reliable quantum chemistry simulations at least for the tested systems.

2.
J Chem Phys ; 154(5): 054701, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33557550

RESUMO

Despite advances of lanthanide-doped upconversion (UC) materials, the applications such as light-emitting diode and biological imaging are limited by low quantum efficiency. For this context, the understanding of unique interactions between the doped-lanthanides and the host crystals has attracted a huge amount of the researcher's interest. In particular, it was revealed that doping lanthanide ions in a non-centrosymmetric site of host lattice is the cause of relaxation of the Laporte selection rule in the 4f-4f transition of lanthanide ions. One of the layered perovskites CsBiNb2O7 is known to have non-centrosymmetric sites, which would lead to highly bright UC emission. Nevertheless, to our knowledge, there has been no research on the UC comparison between host materials of CsBiNb2O7 with other hosts. In this article, we present the UC intensity comparison of Yb3+-Er3+ ion doped CsBiNb2O7, NaYF4, BaTiO3, and SrTiO3 hosts (the UC in CsBiNb2O7:Er3+,Yb3+ was 2.4 times that of NaYF4:Er3+,Yb3+ and ∼70 times that of SrTiO3:Er3+,Yb3+). After that, we dig into UC, downshifting, and double beam system UC properties. The activator concentration was optimized by varying the doping ratio of Yb3+ and Er3+, and we found out the main reason for the concentration quenching behavior in Er3+ ion doped CsBiNb2O7 is dipole-dipole interaction. In addition, the double excitation experiment indicates that the absorption (4I15/2 → 4I13/2) factor is stronger than the stimulated emission (4I13/2 → 4I15/2) factor in CsBiNb2O7 under 1540 nm laser irradiation.

3.
J Phys Chem Lett ; 10(11): 3071-3079, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31117686

RESUMO

Vesicle transport conducted by motor protein multiplexes (MPMs), which is ubiquitous among eukaryotes, shows anomalous and stochastic dynamics qualitatively different from the dynamics of thermal motion and artificial active matter; the relationship between in vivo vesicle-delivery dynamics and the underlying physicochemical processes is not yet quantitatively understood. Addressing this issue, we perform accurate tracking of individual vesicles, containing upconverting nanoparticles, transported by kinesin-dynein-multiplexes along axonal microtubules. The mean-square-displacement of vesicles along the microtubule exhibits unusual dynamic phase transitions that are seemingly inconsistent with the scaling behavior of the mean-first-passage time over the travel length. These paradoxical results and the vesicle displacement distribution are quantitatively explained and predicted by a multimode MPM model, developed in the current work, where ATP-hydrolysis-coupled motion of MPM has both unidirectional and bidirectional modes.


Assuntos
Dineínas/metabolismo , Cinesinas/metabolismo , Corpos Multivesiculares/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte Axonal , Transporte Biológico Ativo , Linhagem Celular , Humanos , Hidrólise , Cinética , Microtúbulos/metabolismo , Modelos Biológicos , Nanopartículas/metabolismo
4.
Int J Mol Sci ; 20(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901823

RESUMO

Lanthanide-doped upconversion nanoparticles (UCNPs) are inorganic nanomaterials in which the lanthanide cations embedded in the host matrix can convert incident near-infrared light to visible or ultraviolet light. These particles are often used for long-term and real-time imaging because they are extremely stable even when subjected to continuous irradiation for a long time. It is now possible to image their movement at the single particle level with a scale of a few nanometers and track their trajectories as a function of time with a scale of a few microseconds. Such UCNP-based single-particle tracking (SPT) technology provides information about the intracellular structures and dynamics in living cells. Thus far, most imaging techniques have been built on fluorescence microscopic techniques (epifluorescence, total internal reflection, etc.). However, two-dimensional (2D) images obtained using these techniques are limited in only being able to visualize those on the focal planes of the objective lens. On the contrary, if three-dimensional (3D) structures and dynamics are known, deeper insights into the biology of the thick cells and tissues can be obtained. In this review, we introduce the status of the fluorescence imaging techniques, discuss the mathematical description of SPT, and outline the past few studies using UCNPs as imaging probes or biologically functionalized carriers.


Assuntos
Rastreamento de Células , Nanopartículas/química , Nanopartículas/metabolismo , Transporte Biológico , Sistemas de Liberação de Medicamentos , Imunofluorescência , Imageamento Tridimensional , Microscopia de Fluorescência , Imagem Molecular , Nanotecnologia
5.
Phys Chem Chem Phys ; 19(15): 9739-9744, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28367577

RESUMO

Upconversion nanoparticles (UCNPs) have attracted enormous interest over the past few years because of their unique optical properties and potential for use in various applications such as bioimaging probes, biosensors, and light-harvesting materials for photovoltaics. The improvement of imaging resolution is one of the most important goals for UCNPs used in biological applications. Super-resolution imaging techniques that overcome the fundamental diffraction limit of light rely on the photochemistry of organic dyes or fluorescent proteins. Here we report our progress toward super-resolution microscopy with UCNPs. We found that the red emission (655 nm) of core/shell UCNPs with the structure NaYF4:Yb3+,Er3+/NaYF4 could be modulated by emission depletion (ED) of the intermediate state that interacts resonantly with an infrared beam (1540 nm). In contrast, the green emission bands (525 and 545 nm) of the UCNPs were less affected by irradiation with the infrared beam. The origin of such distinct behaviors between the green and red emissions was attributed to their different photophysical pathways.

6.
Nanoscale ; 7(46): 19397-402, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26537159

RESUMO

We report on the development of a three-dimensional (3D) live-cell imaging technique with high spatiotemporal resolution using lanthanide-doped upconverting nanoparticles (UCNPs). It employs the sectioning capability of confocal microscopy except that the two-dimensional (2D) section images are acquired by wide-field epi-fluorescence microscopy. Although epi-fluorescence images are contaminated with the out-of-focus background in general, the near-infrared (NIR) excitation used for the excitation of UCNPs does not generate any autofluorescence, which helps to lower the background. Moreover, the image blurring due to defocusing was naturally eliminated in the image reconstruction process. The 3D images were used to investigate the cellular dynamics such as nuclear uptake and single-particle tracking that require 3D description.


Assuntos
Imageamento Tridimensional , Elementos da Série dos Lantanídeos/química , Pontos Quânticos/química , Células HeLa , Humanos , Microscopia de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...