Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 102(1): 202-216.e7, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30792151

RESUMO

The activities of neuronal populations exhibit temporal sequences that are thought to mediate spatial navigation, cognitive processing, and motor actions. The mechanisms underlying the generation and maintenance of sequential neuronal activity remain unclear. We found that layer 2 and/or 3 pyramidal neurons (PNs) showed sequential activation in the mouse primary motor cortex during motor skill learning. Concomitantly, the activity of somatostatin (SST)-expressing interneurons increased and decreased in a task-specific manner. Activating SST interneurons during motor training, either directly or via inhibiting vasoactive-intestinal-peptide-expressing interneurons, prevented learning-induced sequential activities of PNs and behavioral improvement. Conversely, inactivating SST interneurons during the learning of a new motor task reversed sequential activities and behavioral improvement that occurred during a previous task. Furthermore, the control of SST interneurons over sequential activation of PNs required CaMKII-dependent synaptic plasticity. These findings indicate that SST interneurons enable and maintain synaptic plasticity-dependent sequential activation of PNs during motor skill learning.


Assuntos
Interneurônios/fisiologia , Aprendizagem/fisiologia , Córtex Motor/fisiologia , Destreza Motora , Células Piramidais/fisiologia , Animais , Interneurônios/metabolismo , Camundongos , Córtex Motor/metabolismo , Plasticidade Neuronal , Células Piramidais/metabolismo , Somatostatina/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
3.
Neuron ; 94(1): 37-47.e5, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28318784

RESUMO

Elucidating temporal windows of signaling activity required for synaptic and behavioral plasticity is crucial for understanding molecular mechanisms underlying these phenomena. Here, we developed photoactivatable autocamtide inhibitory peptide 2 (paAIP2), a genetically encoded, light-inducible inhibitor of CaMKII activity. The photoactivation of paAIP2 in neurons for 1-2 min during the induction of LTP and structural LTP (sLTP) of dendritic spines inhibited these forms of plasticity in hippocampal slices of rodents. However, photoactivation ∼1 min after the induction did not affect them, suggesting that the initial 1 min of CaMKII activation is sufficient for inducing LTP and sLTP. Furthermore, the photoactivation of paAIP2 expressed in amygdalar neurons of mice during an inhibitory avoidance task revealed that CaMKII activity during, but not after, training is required for the memory formation. Thus, we demonstrated that paAIP2 is useful to elucidate the temporal window of CaMKII activation required for synaptic plasticity and learning.


Assuntos
Aprendizagem da Esquiva/fisiologia , Região CA1 Hipocampal/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Espinhas Dendríticas/metabolismo , Plasticidade Neuronal/fisiologia , Células Piramidais/metabolismo , Animais , Animais Recém-Nascidos , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Espinhas Dendríticas/fisiologia , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Células HeLa , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Humanos , Immunoblotting , Imuno-Histoquímica , Cinética , Potenciação de Longa Duração/fisiologia , Camundongos , Microscopia de Fluorescência , Neurônios/metabolismo , Neurônios/fisiologia , Optogenética , Células Piramidais/fisiologia , Proteínas de Ligação a RNA , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Repressoras , Proteínas Supressoras de Tumor/genética
4.
J Cell Biol ; 191(3): 631-44, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20974810

RESUMO

Human embryonic stem cells (ESCs [hESCs]) proliferate as colonies wherein individual cells are strongly adhered to one another. This architecture is linked to hESC self-renewal, pluripotency, and survival and depends on epithelial cadherin (E-cadherin), NMMIIA (nonmuscle myosin IIA), and p120-catenin. E-cadherin and p120-catenin work within a positive feedback loop that promotes localized accumulation of E-cadherin at intercellular junctions. NMMIIA stabilizes p120-catenin protein and controls E-cadherin-mediated intercellular adhesion. Perturbations of this signaling network disrupt colony formation, destabilize the transcriptional regulatory circuitry for pluripotency, and impair long-term survival of hESCs. Furthermore, depletion of E-cadherin markedly reduces the efficiency of reprogramming of human somatic cells to an ESC-like state. The feedback regulation and mechanical-biochemical integration provide mechanistic insights for the regulation of intercellular adhesion and cellular architecture in hESCs during long-term self-renewal. Our findings also contribute to the understanding of microenvironmental regulation of hESC identity and somatic reprogramming.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Transdução de Sinais , Caderinas/metabolismo , Cateninas/metabolismo , Células Cultivadas , Humanos , Miosina não Muscular Tipo IIA/metabolismo , delta Catenina
5.
Blood ; 116(17): 3297-310, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20616216

RESUMO

Despite recent advances in our understanding of biochemical regulation of neutrophil chemotaxis, little is known about how mechanical factors control neutrophils' persistent polarity and rapid motility. Here, using a human neutrophil-like cell line and human primary neutrophils, we describe a dynamic spatiotemporal pattern of tractions during chemotaxis. Tractions are located at both the leading and the trailing edge of neutrophils, where they oscillate with a defined periodicity. Interestingly, traction oscillations at the leading and the trailing edge are out of phase with the tractions at the front leading those at the back, suggesting a temporal mechanism that coordinates leading edge and trailing edge activities. The magnitude and periodicity of tractions depend on the activity of nonmuscle myosin IIA. Specifically, traction development at the leading edge requires myosin light chain kinase-mediated myosin II contractility and is necessary for α5ß1-integrin activation and leading edge adhesion. Localized myosin II activation induced by spatially activated small GTPase Rho, and its downstream kinase p160-ROCK, as previously reported, leads to contraction of actin-myosin II complexes at the trailing edge, causing it to de-adhere. Our data identify a key biomechanical mechanism for persistent cell polarity and motility.


Assuntos
Quimiotaxia de Leucócito , Neutrófilos/citologia , Adesão Celular , Linhagem Celular , Células Cultivadas , Humanos , Integrina alfa5beta1/metabolismo , Miosina Tipo II/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Neutrófilos/metabolismo
6.
Curr Biol ; 18(17): 1288-94, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18760605

RESUMO

Podosomes are self-organized, dynamic, actin-containing structures that adhere to the extracellular matrix via integrins [1-5]. Yet, it is not clear what regulates podosome dynamics and whether podosomes can function as direct mechanosensors, like focal adhesions [6-9]. We show here that myosin-II proteins form circular structures outside and at the podosome actin ring to regulate podosome dynamics. Inhibiting myosin-II-dependent tension dissipated podosome actin rings before dissipating the myosin-ring structure. As podosome rings changed size or shape, tractions underneath the podosomes were exerted onto the substrate and were abolished when myosin-light-chain activity was inhibited. The magnitudes of tractions were comparable to those generated underneath focal adhesions, and they increased with substrate stiffness. The dynamics of podosomes and of focal adhesions were different. Torsional tractions underneath the podosome rings were generated with rotations of podosome rings in a nonmotile, nonrotating cell, suggesting a unique feature of these circular structures. Stresses applied via integrins at the apical surface directly displaced podosomes near the basal surface. Stress-induced podosome displacements increased nonlinearly with applied stresses. Our results suggest that podosomes are dynamic mechanosensors in which interactions of myosin tension and actin dynamics are crucial for regulating these self-organized structures in living cells.


Assuntos
Citoesqueleto de Actina/fisiologia , Matriz Extracelular/metabolismo , Mecanotransdução Celular/fisiologia , Miosina Tipo II/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Actinas/ultraestrutura , Azepinas/farmacologia , Células Cultivadas , Depsipeptídeos/farmacologia , Inibidores Enzimáticos/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/ultraestrutura , Adesões Focais/metabolismo , Adesões Focais/ultraestrutura , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Integrinas/metabolismo , Miosina Tipo II/antagonistas & inibidores , Miosina Tipo II/fisiologia , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Naftalenos/farmacologia
7.
Mol Biol Cell ; 19(9): 3909-22, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18596232

RESUMO

Migration of cells up the chemoattractant gradients is mediated by the binding of chemoattractants to G protein-coupled receptors and activation of a network of coordinated excitatory and inhibitory signals. Although the excitatory process has been well studied, the molecular nature of the inhibitory signals remains largely elusive. Here we report that the receptor for activated C kinase 1 (RACK1), a novel binding protein of heterotrimeric G protein betagamma (G betagamma) subunits, acts as a negative regulator of directed cell migration. After chemoattractant-induced polarization of Jurkat and neutrophil-like differentiated HL60 (dHL60) cells, RACK1 interacts with G betagamma and is recruited to the leading edge. Down-regulation of RACK1 dramatically enhances chemotaxis of cells, whereas overexpression of RACK1 or a fragment of RACK1 that retains G betagamma-binding capacity inhibits cell migration. Further studies reveal that RACK1 does not modulate cell migration through binding to other known interacting proteins such as PKC beta and Src. Rather, RACK1 selectively inhibits G betagamma-stimulated phosphatidylinositol 3-kinase gamma (PI3K gamma) and phospholipase C (PLC) beta activity, due to the competitive binding of RACK1, PI3K gamma, and PLC beta to G betagamma. Taken together, these findings provide a novel mechanism of regulating cell migration, i.e., RACK1-mediated interference with G betagamma-dependent activation of key effectors critical for chemotaxis.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Regulação da Expressão Gênica , Proteínas de Neoplasias/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipase C beta/metabolismo , Receptores de Superfície Celular/fisiologia , Movimento Celular , Quimiotaxia , Classe Ib de Fosfatidilinositol 3-Quinase , Inibidores Enzimáticos/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Células HL-60 , Humanos , Isoenzimas/metabolismo , Células Jurkat , Modelos Moleculares , Modelos Teóricos , Proteínas de Neoplasias/metabolismo , Neutrófilos/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores de Quinase C Ativada , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...