Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(2): 1248-1255, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34964606

RESUMO

It is important but challenging to elucidate the electrochemical reaction mechanisms of organic compounds using electroanalytical methods. Particularly, a rapid and straightforward method that provides information on reaction intermediates or other key electrochemical parameters may be useful. In this work, we exploited the advantages of classic thin-layer electrochemistry to develop a thin-layer electroanalysis microchip (TEAM). The TEAM provided better-resolved voltammetric peaks than under semi-infinite diffusion conditions owing to its small height. Importantly, rapid and accurate determination of the number of electrons transferred, n, was enabled by mechanically confining the microliter-scale volume analyte at the electrode, while securing ionic conduction using polyelectrolyte gels. The performance of the TEAM was validated using voltammetry and coulometry of standard redox couples. Utilizing the TEAM, a (spectro)electrochemical analysis of FM 1-43, an organic dye widely used in neuroscience, was successfully performed. Moreover, the TEAM was applied to study the electrochemical oxidation mechanism of pivanilides and alkyltrifluoroborate salts with different substituents and solvents. This work suggests that TEAM is a promising tool to provide invaluable mechanistic information and promote the rational design of electrosynthetic strategies.


Assuntos
Eletroquímica/métodos , Análise em Microsséries/métodos , Difusão , Eletrodos , Elétrons , Oxirredução
2.
Chem Asian J ; 16(20): 3014-3025, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34402214

RESUMO

Electrochemistry of the silicon oxide dielectric layer, a notable insulator often used as a gate oxide, is counterintuitive, but addresses fundamental questions to yield novel scientific discoveries. In this minireview, the fundamental electron transfer mechanism of silicon oxide in the electrolyte solution is elucidated. The possible electrochemical reactions to date are discussed in detail, providing numerous potential areas of application which are elaborated and justified. This minireview not only provides background but also guides future research.

3.
Proc Natl Acad Sci U S A ; 117(52): 32939-32946, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318179

RESUMO

The faradaic reaction at the insulator is counterintuitive. For this reason, electroorganic reactions at the dielectric layer have been scarcely investigated despite their interesting aspects and opportunities. In particular, the cathodic reaction at a silicon oxide surface under a negative potential bias remains unexplored. In this study, we utilize defective 200-nm-thick n+-Si/SiO2 as a dielectric electrode for electrolysis in an H-type divided cell to demonstrate the cathodic electroorganic reaction of anthracene and its derivatives. Intriguingly, the oxidized products are generated at the cathode The experiments under various conditions provide consistent evidence supporting that the electrochemically generated hydrogen species, supposedly the hydrogen atom, is responsible for this phenomenon. The electrogenerated hydrogen species at the dielectric layer suggests a synthetic strategy for organic molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...