Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Biotechnol J ; 19(3): e2300667, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479987

RESUMO

The recombinant adeno-associated virus (rAAV) vectors used in gene therapy are usually produced by transfecting three different plasmids (Adenoviral helper plasmid (pHelper), AAV rep/cap plasmids (pRepCap), and Transgene plasmid (pAAV-GOI)) into human embryonic kidney 293 (HEK293) cells. However, the high proportion of unwanted empty capsids generated during rAAV production is problematic. To simultaneously enhance the genome titer and full capsid ratio, the ratio of the three plasmids transfected into HEK293 cells was optimized using design-of-experiment (DoE). AAV2 and AAV9, which have different production kinetics, were selected as cell-associated and secreted model AAVs, respectively. In 125 mL Erlenmeyer flasks, the genome titers of rAAV2 and rAAV9 at DoE-optimized plasmid weight ratios (pHelper:pRep2Cap2:pAAV-GOI = 1:3.52:0.50 for rAAV2 and pHelper:pRep2Cap9:pAAV-GOI = 1:1.44:0.27 for rAAV9) were 2.23-fold and 2.26-fold higher than those in the widely used plasmid weight ratio (1:1:1), respectively. In addition, compared with the plasmid ratio of 1:1:1, the relative VP3 band intensities of rAAV2 and rAAV9, which represent the relative empty capsid ratios, were reduced by 26% and 25%, respectively, at the DoE-optimized plasmid ratio. Reduced empty capsid ratios in the DoE-optimized plasmid ratios were also confirmed using transmission electron microscopy (TEM). Taken together, regardless of the AAV serotype, DoE-aided optimization of the triple plasmid ratio was found to be an efficient means of improving the production of rAAV with a high full capsid ratio.


Assuntos
Capsídeo , Parvovirinae , Humanos , Células HEK293 , Vetores Genéticos/genética , Dependovirus/genética , Plasmídeos/genética , Proteínas do Capsídeo/genética , Parvovirinae/genética
2.
ACS Synth Biol ; 13(2): 634-647, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38240694

RESUMO

With the emerging novel biotherapeutics that are typically difficult-to-express (DTE), improvement is required for high-yield production. To identify novel targets that can enhance DTE protein production, we performed genome-wide fluorescence-activated cell sorting (FACS)-based clustered regularly interspaced short palindromic repeats (CRISPR) knockout screening in bispecific antibody (bsAb)-producing Chinese hamster ovary (CHO) cells. The screen identified the two highest-scoring genes, Atf7ip and Setdb1, which are the binding partners for H3K9me3-mediated transcriptional repression. The ATF7IP-SETDB1 complex knockout in bsAb-producing CHO cells suppressed cell growth but enhanced productivity by up to 2.7-fold. Decreased H3K9me3 levels and an increased transcriptional expression level of the transgene were also observed. Furthermore, perturbation of the ATF7IP-SETDB1 complex in monoclonal antibody (mAb)-producing CHO cells led to substantial improvements in mAb production, increasing the productivity by up to 3.9-fold without affecting the product quality. Taken together, the genome-wide FACS-based CRISPR screen identified promising targets associated with histone methylation, whose perturbation enhanced the productivity by unlocking the transgene expression.


Assuntos
Sistemas CRISPR-Cas , Genoma , Cricetinae , Animais , Cricetulus , Sistemas CRISPR-Cas/genética , Células CHO , Processamento de Proteína Pós-Traducional , Anticorpos Monoclonais/metabolismo
3.
Sci Rep ; 13(1): 21889, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081979

RESUMO

The purpose of this study was to evaluate the differences in cerebral glucose metabolism and metabolic connectivity between noise-induced hearing loss (NIHL) subjects and normal subjects. Eighty-nine subjects who needed close observation for NIHL or were diagnosed with NIHL and 89 normal subjects were enrolled. After pre-processing of positron emission tomography images including co-registration, spatial normalization, and smoothing, a two-sample t-test was conducted to compare cerebral glucose metabolism between the two groups. To evaluate metabolic connectivity between two groups, BRAPH-BRain Analysis using graPH theory, a software package to perform graph theory analysis of the brain connectome was used. NIHL subjects showed hypometabolism compared to normal subjects in both insulae (x - 38, y - 18, z 4; × 42, y - 12, z 4) and right superior temporal gyrus (× 44, y 16, z - 20). No brain regions showed hypermetabolism in the NIHL subjects. In metabolic connectivity analysis, NIHL subjects showed decreased average strength, global efficiency, local efficiency, and mean clustering coefficient when compared with normal subjects. Decreased glucose metabolism and metabolic connectivity in NIHL subject might reflect decreased auditory function. It might be characteristic of sensorineural hearing loss.


Assuntos
Perda Auditiva Provocada por Ruído , Perda Auditiva Neurossensorial , Humanos , Tomografia Computadorizada por Raios X , Encéfalo/diagnóstico por imagem , Cabeça
4.
Metab Eng ; 80: 66-77, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37709005

RESUMO

Chinese hamster ovary (CHO) cells are the preferred mammalian host cells for therapeutic protein production that have been extensively engineered to possess the desired attributes for high-yield protein production. However, empirical approaches for identifying novel engineering targets are laborious and time-consuming. Here, we established a genome-wide CRISPR/Cas9 screening platform for CHO-K1 cells with 111,651 guide RNAs (gRNAs) targeting 21,585 genes using a virus-free recombinase-mediated cassette exchange-based gRNA integration method. Using this platform, we performed a positive selection screening under hyperosmotic stress conditions and identified 180 genes whose perturbations conferred resistance to hyperosmotic stress in CHO cells. Functional enrichment analysis identified hyperosmotic stress responsive gene clusters, such as tRNA wobble uridine modification and signaling pathways associated with cell cycle arrest. Furthermore, we validated 32 top-scoring candidates and observed a high rate of hit confirmation, demonstrating the potential of the screening platform. Knockout of the novel target genes, Zfr and Pnp, in monoclonal antibody (mAb)-producing recombinant CHO (rCHO) cells and bispecific antibody (bsAb)-producing rCHO cells enhanced their resistance to hyperosmotic stress, thereby improving mAb and bsAb production. Overall, the collective findings demonstrate the value of the screening platform as a powerful tool to investigate the functions of genes associated with hyperosmotic stress and to discover novel targets for rational cell engineering on a genome-wide scale in CHO cells.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Cricetinae , Animais , Cricetulus , Células CHO , Genoma , Anticorpos Monoclonais
5.
Breast ; 71: 106-112, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572626

RESUMO

PURPOSE: Positive margins after breast-conserving surgery are associated with poor oncological outcomes and warrant additional surgery. This study aimed to evaluate the effectiveness of high-dose radiation therapy for positive margins by comparing local recurrence between patients with positive and negative margins. METHODS: We retrospectively evaluated 550 patients treated with adjuvant radiation therapy after breast-conserving surgery for invasive breast cancer between 2013 and 2019. The total equivalent dose in 2 Gy fractions (EQD2) to the tumor bed ranged from 65.81 to 66.25 Gy for positive margins and 59.31-61.81 Gy for negative margins. The differences in local recurrence between the positive and negative margin groups were analyzed. RESULTS: After a median follow-up of 58 months, the crude local recurrence rate was 7.3% in the positive margin group (n = 55) and 2.4% in the negative margin group (n = 495). Positive margins were associated with higher local recurrence without statistical significance in the entire cohort (p = 0.062). Among patients aged <60 years, those with positive margins had a significantly lower 5-year local recurrence-free survival rate than those with negative margins (89.16% vs. 97.57%, respectively; p = 0.005). In contrast, there was no significant difference in the 5-year local recurrence-free survival rate between patients with positive and negative margins among those aged ≥60 years (100.00% vs. 94.38%, respectively; p = 0.426). CONCLUSION: In this study, positive margins were not associated with poor local control in older patients after a high-dose boosts. Further prospective studies are needed to verify our findings.


Assuntos
Neoplasias da Mama , Humanos , Idoso , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Mastectomia Segmentar , Estudos Retrospectivos , Dosagem Radioterapêutica , Recidiva Local de Neoplasia/cirurgia
6.
Brain Sci ; 13(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37371372

RESUMO

We evaluated the effects of obesity and osteocalcin on glucose metabolism in the brain. A total of 179 healthy men were enrolled in this study. After preprocessing positron emission tomography images, including by performing coregistration, spatial normalization, and smoothing, regression analysis was conducted to identify the correlation between body mass index, osteocalcin, and brain glucose metabolism. Body mass index was positively correlated with brain glucose metabolism in the anterior lobe of the right cerebellum, the anterior and posterior lobes of the left cerebellum, the right middle frontal gyrus (Brodmann area 9), the right cingulate gyrus (Brodmann area 32), the right anterior cingulate (Brodmann area 32), the left middle frontal gyrus (Brodmann area 10), and the subgyral area of the left frontal lobe. Osteocalcin was negatively correlated with glucose metabolism in the anterior lobe of the left cerebellum. Body mass index was positively correlated with brain glucose metabolism in the prefrontal cortex and cerebellum. Osteocalcin levels were negatively correlated with brain glucose metabolism in the left cerebellum.

7.
Biotechnol Adv ; 67: 108206, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37354999

RESUMO

Over recent decades, therapeutic proteins have had widespread success in treating a myriad of diseases. Glycosylation, a near universal feature of this class of drugs, is a critical quality attribute that significantly influences the physical properties, safety profile and biological activity of therapeutic proteins. Optimizing protein glycosylation, therefore, offers an important avenue to developing more efficacious therapies. In this review, we discuss specific examples of how variations in glycan structure and glycoengineering impacts the stability, safety, and clinical efficacy of protein-based drugs that are already in the market as well as those that are still in preclinical development. We also highlight the impact of glycosylation on next generation biologics such as T cell-based cancer therapy and gene therapy.


Assuntos
Anticorpos Monoclonais , Neoplasias , Humanos , Glicosilação , Anticorpos Monoclonais/química , Polissacarídeos/química , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Terapia Baseada em Transplante de Células e Tecidos
12.
Metab Eng ; 72: 247-258, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35398513

RESUMO

Targeted engineering of mammalian cells has been widely attempted to ensure the efficient production of therapeutic proteins with proper quality during bioprocesses. However, the identification of novel targets for cell engineering is labor-intensive and has not yet been fully substantiated. Here, we established a CRISPR/Cas9 library screening platform in human embryonic kidney (HEK293) cells based on guide RNA integration mediated by recombinase-mediated cassette exchange (RMCE) to interrogate gene function in a high-throughput manner. This platform was further advanced using a nuclear localization signal-tagged recombinase that increased RMCE efficiency by 4.8-fold. Using this platform, we identified putative target genes, such as CDK8, GAS2L1, and GSPT1, and their perturbation confers resistance to hyperosmotic stress that inhibits cell growth and induces apoptosis. Knockout of these genes in monoclonal antibody (mAb)-producing recombinant HEK293 (rHEK293) cells enhanced resistance to hyperosmotic stress-induced apoptosis, resulting in enhanced mAb production. In particular, GSPT1-knockout yielded 2.3-fold increase in maximum mAb concentration in fed-batch culture where hyperosmotic stress naturally occurs due to nutrient feeding. Taken together, this streamlined screening platform allows the identification of novel targets associated with hyperosmotic stress, enabling the development of stress-resistant cells producing recombinant proteins.


Assuntos
Sistemas CRISPR-Cas , Proteínas Recombinantes , Recombinases , Anticorpos Monoclonais , Células HEK293 , Humanos , Rim/metabolismo , Pressão Osmótica , Proteínas Recombinantes/biossíntese , Recombinases/genética
13.
Metab Eng ; 69: 73-86, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34775077

RESUMO

With the advent of novel therapeutic proteins with complex structures, cellular bottlenecks in secretory pathways have hampered the high-yield production of difficult-to-express (DTE) proteins in CHO cells. To mitigate their limited secretory capacity, recombinant CHO (rCHO) cells were engineered to express Blimp1, a master regulator orchestrating B cell differentiation into professional secretory plasma cells, using the streamlined CRISPR/Cas9-based recombinase-mediated cassette exchange landing pad platform. The expression of Blimp1α or Blimp1ß in rCHO cells producing DTE recombinant human bone morphogenetic protein-4 (rhBMP-4) increased specific rhBMP-4 productivity (qrhBMP-4). However, since Blimp1α expression suppressed cell growth more significantly than Blimp1ß expression, only Blimp1ß expression enhanced rhBMP-4 yield. In serum-free suspension culture, Blimp1ß expression significantly increased the rhBMP-4 concentration (>3-fold) and qrhBMP-4 (>4-fold) without significant increase in hBMP-4 transcript levels. In addition, Blimp1ß expression facilitated mature rhBMP-4 secretion by active proteolytic cleavage in the secretory pathway. Transcriptomic profiling (RNA-seq) revealed global changes in gene expression patterns that promote protein processing in secretory organelles. In-depth integrative analysis of the current RNA-seq data, public epigenome/RNA-seq data, and in silico analysis identified 45 potential key regulators of Blimp1 that are consistently up- or down-regulated in Blimp1ß expressing rCHO cells and plasma cells. Blimp1ß expression also enhanced the production of easy-to-express monoclonal antibodies (mAbs) and modulated the expression of key regulators in rCHO cells producing mAb. Taken together, the results show that controlled expression of Blimp1ß improves the production capacity of rCHO cells by regulating secretory machinery and suggest new opportunities for engineering promising targets that are resting in CHO cells.


Assuntos
Plasmócitos , Fatores de Transcrição , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Plasmócitos/metabolismo , Proteínas Recombinantes , Fatores de Transcrição/genética
14.
Jpn J Radiol ; 39(11): 1097-1102, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34142306

RESUMO

PURPOSE: We aimed to evaluate the white matter hyperintensity (WMH) effect on dopamine transporter availability (DAT) of striatum. MATERIALS AND METHODS: A total of 48 patients who showed visually normal F-18 FP-CIT uptake were included in this study. Each FP-CIT image were pre-processed using SPM12. Co-registration and spatial normalization of FP-CIT image conducted using T1-weighted magnetic resonance imaging (MRI). And then smoothing of normalized FP-CIT image was performed. Intensity normalization was performed using cerebellum as a reference region. With pre-defined volume of interest template, the specific binding ratio (SBR) of both side of caudate nucleus and putamen was calculated. Fluid attenuated inversion recovery MRI scans were used to evaluate WMH number and volume. RESULTS: SBRs of left and right caudate nucleus were correlated with age (r = - 0.615; p < 0.0001; n = 48, r = - 0.607; p < 0.0001; n = 48, respectively), high density lipoprotein cholesterol (r = 0.296; p = 0.041; n = 48, r = 0.29; p = 0.0455; n = 48, respectively), and WMH number (r = - 0.459; p = 0.001; n = 48, r = - 0.481; p = 0.0005; n = 48, respectively) and volume (r = - 0.407; p = 0.0041; n = 48, r = - 0.428; p = 0.0024; n = 48, respectively). CONCLUSION: DAT availability of patients who showed visually normal F-18 FP-CIT uptake was correlated with number and volume of WMH.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Substância Branca , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Humanos , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada de Emissão de Fóton Único , Tropanos , Substância Branca/diagnóstico por imagem
15.
ACS Synth Biol ; 10(7): 1715-1727, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34133132

RESUMO

A platform, based on targeted integration of transgenes using recombinase-mediated cassette exchange (RMCE) coupled with CRISPR/Cas9, is increasingly being used for the development of mammalian cell lines that produce therapeutic proteins, because of reduced clonal variation and predictable transgene expression. However, low efficiency of the RMCE process has hampered its application in multicopy or multisite integration of transgenes. To improve RMCE efficiency, nuclear transport of RMCE components such as site-specific recombinase and donor plasmid was accelerated by incorporation of nuclear localization signal and DNA nuclear-targeting sequence, respectively. Consequently, the efficiency of RMCE in dual-landing pad human embryonic kidney 293 (HEK293) cell lines harboring identical or orthogonal pairs of recombination sites at two well-known human safe harbors (AAVS1 and ROSA26 loci), increased 6.7- and 8.1-fold, respectively. This platform with enhanced RMCE efficiency enabled simultaneous integration of transgenes at the two sites using a single transfection without performing selection and enrichment processes. The use of a homotypic dual-landing pad HEK293 cell line capable of incorporating the same transgenes at two sites resulted in a 2-fold increase in the transgene expression level compared to a single-landing pad HEK293 cell line. In addition, the use of a heterotypic dual-landing pad HEK293 cell line, which can incorporate transgenes for a recombinant protein at one site and an effector transgene for cell engineering at another site, increased recombinant protein production. Overall, a streamlined RMCE platform can be a versatile tool for mammalian cell line development by facilitating multigene expression at genomic safe harbors.


Assuntos
DNA Nucleotidiltransferases/metabolismo , Expressão Gênica , Transporte Biológico , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico , Transfecção , Transgenes
16.
Nucl Med Commun ; 42(4): 410-415, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33306626

RESUMO

OBJECTIVES: Sex differences exist in a variety of aspects including neurochemicals as well as behavioral traits of cognition, language, and aggression. We performed a meta-analysis of studies using a coordinate-based technique of activation-likelihood estimation (ALE) to identify the pooled estimated effect of sex difference. METHODS: We performed a systematic search of MEDLINE and EMBASE for English-language publications using the keywords of 'positron emission tomography (PET)', 'single-photon emission computed tomography (SPECT)', and 'sex'. A threshold of uncorrected P < 0.001 (minimum volume of 200 mm3) was applied to the resulting ALE map. RESULTS: Cerebral blood flow (CBF) in right precuneus, left superior temporal gyrus, left inferior temporal, left inferior frontal gyrus, right cerebellar tonsil, and right middle temporal gyrus was higher in females than males. CBF in left anterior cingulate was higher in males than females. Whereas, the cerebral metabolic rate for glucose (CMRglu) in left thalamus, left cingulate gyrus, right inferior parietal lobule, left medial frontal gyrus, right middle frontal gyrus, right midbrain, and left inferior parietal lobule was higher in females than males. However, there was no brain region that showed higher CMRglu in males than females. CONCLUSION: Regional CBF and CMRglu from PET and SPECT showed the difference between males and females.


Assuntos
Química Encefálica/fisiologia , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Glucose/metabolismo , Adulto , Algoritmos , Feminino , Humanos , Funções Verossimilhança , Masculino , Tomografia por Emissão de Pósitrons , Caracteres Sexuais , Tomografia Computadorizada de Emissão de Fóton Único
17.
Ann Nucl Med ; 35(1): 76-82, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33052524

RESUMO

OBJECTIVE: Aging decreases dopamine transporter (DAT) availability of striatum both in humans and rodents. We aimed to investigate the relationship of DAT availabilities from ventral striatum, caudate nucleus, and putamen with aging in healthy subjects. METHODS: 123I-FP-CIT single photon emission computed tomography (SPECT) was performed in all subjects. Specific binding of 123I-FP-CIT regarding DAT was calculated using a volume-of-interest-based analysis of ventral striatum, caudate nucleus, putamen. The cerebellum was chosen as a reference region. Specific binding ratios (SBRs) were calculated as follows: SBR = (target- cerebellum)/cerebellum. RESULTS: A total of 166 healthy subjects (109 males and 57 females) were included in this study. SBRs of ventral striatum, caudate nucleus, and putamen were negatively correlated with age. In young males, SBRs of ventral striatum and putamen were not correlated with aging. However, SBRs of caudate nucleus showed the trend toward negative correlation with age in the young group. In old males, SBR of caudate nucleus was negatively correlated with age and SBR of ventral striatum showed a trend toward negative correlation with age. Slopes of regression lines were not significantly different according to age groups in ventral striatum, caudate nucleus, or putamen. SBRs of ventral striatum, caudate nucleus, and putamen were negatively correlated with age in young females, but not in old females. Interestingly, slopes of regression line were significantly different between young and old females in ventral striatum, caudate nucleus, and putamen. CONCLUSIONS: We have shown that slopes of regression lines of DAT availabilities and age were significantly different between young and old subjects in females, not in males. Therefore, sex has an impact on aging-related decline of striatal DAT availability.


Assuntos
Envelhecimento/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Voluntários Saudáveis , Adulto , Idoso , Envelhecimento/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Caracteres Sexuais , Tomografia Computadorizada de Emissão de Fóton Único
18.
Appl Microbiol Biotechnol ; 105(1): 67-76, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33191460

RESUMO

Our previous work showed that there is a limitation in the use of dihydrofolate reductase (dhfr)/methotrexate (MTX)-mediated gene amplification systems in dhfr-non-deficient HEK293 cells, as endogenous dhfr may interfere with the amplification process. In the present study, we successfully generated Epstein-Barr virus nuclear antigen-1 (EBNA-1)-amplified HEK293 cells in a dhfr-non-deficient HEK293 cell background using a single-plasmid vector-based gene amplification system with shRNA targeting the 3'-UTR of endogenous dhfr. The introduction of this shRNA efficiently downregulated the expression of endogenous dhfr in the HEK293 cells without affecting exogenous dhfr expression. The downregulation of endogenous dhfr improved the efficiency of EBNA-1 amplification, as evidenced by a comparison with the amplification extent in cells lacking shRNA expression at the same MTX concentration. The EBNA-1 expression levels from the EBNA-1-amplified clones selected in this study were higher than those obtained from EBNA-1-amplified clones that were generated using the conventional amplification in our previous study. Consistent with previous studies, EBNA-1 amplification improved the production of the Fc-fusion protein through a specific protein productivity (qp)-enhancing effect, rather than by improving cell growth or transfection efficiency. In addition, the N-glycan profiles in the Fc-fusion protein produced using this transient gene expression (TGE) system were not affected by EBNA-1 amplification. These results indicate the potential utility of EBNA-1-amplified mammalian cells, developed using a single-plasmid vector-based gene amplification system, for efficient protein production. KEY POINTS: • EBNA-1-amplified HEK293 cells were established using gene amplification system. • EBNA-1 amplification in TGE system can increase the Fc-fusion protein productivity. • EBNA-1 amplification does not affect the N-glycan profile in the Fc-fusion protein.


Assuntos
Infecções por Vírus Epstein-Barr , Amplificação de Genes , Animais , Células CHO , Cricetinae , Antígenos Nucleares do Vírus Epstein-Barr/genética , Expressão Gênica , Células HEK293 , Herpesvirus Humano 4/genética , Humanos , Metotrexato , Plasmídeos/genética , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
19.
Ann Nucl Med ; 34(7): 496-501, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32424547

RESUMO

OBJECTIVE: Positron emission tomography (PET) is a non-invasive technique measuring quantification of physiological and biochemical processes in the living organism. However, there are many considerations including anesthesia and fasting to acquire small animal imaging. We aimed to evaluate the effects of anesthesia and fasting of rats in dopamine transporter (DAT) imaging acquisition. METHODS: Male Sprague Dawley (SD) rats aged 7 weeks and weighing 180-260 g were used in this study. Rats were randomly divided by 4 groups. Group A was kept under anesthesia for 40 min and fasted over 12 h. Group B was only fasted over 12 h. Group C was only kept under anesthesia for 40 min. Group D was neither kept under anesthesia nor fasted over 12 h. PET scans were started at 40 min after 18F-FP-CIT injection and obtained for 20 min. Volumes-of-interest for striatum and extrastriatal area were used for 18F-FP-CIT PET analysis. Cerebellum was considered as a reference region. Specific binding ratio (SBR) was calculated as follows: [(uptake of target-uptake of cerebellum)]/(uptake of cerebellum). RESULTS: SBR without fasting and anesthesia (group D) was significantly lower than those of other groups (vs group A, p = 0.0004; vs group B, p = 0.0377; vs group C, p = 0.0134). However, SBRs of extrastriatal area (p = 0.5120) were not affected by fasting and anesthesia. CONCLUSIONS: In conclusion, the SBR of striatum was increased after anesthesia by isoflurane and fasting. When designing an experiment using DAT imaging, the effects of isoflurane and fasting should be considered.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neostriado/metabolismo , Ratos , Anestesia , Animais , Jejum , Processamento de Imagem Assistida por Computador , Masculino , Neostriado/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Ratos Sprague-Dawley
20.
ACS Synth Biol ; 9(6): 1263-1269, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32470292

RESUMO

Human cell lines are being increasingly used as host cells to produce therapeutic glycoproteins, due to their human glycosylation machinery. In an attempt to develop a platform for generating isogenic human cell lines producing therapeutic proteins based on targeted integration, three well-known human genomic safe harbors (GSHs)-AAVS1, CCR5, and human ROSA26 loci-were evaluated with respect to the transgene expression level and stability in human embryonic kidney (HEK293) cells. Among the three GSHs, the AAVS1 locus showed the highest eGFP expression with the highest homogeneity. Transgene expression at the AAVS1 locus was sustained without selection for approximately 3 months. Furthermore, the CMV promoter showed the highest expression, followed by the EF1α, SV40, and TK promoters at the AAVS1 locus. Master cell lines were created using CRISPR/Cas9-mediated integration of the landing pad into the AAVS1 locus and were used for faster generation of recombinant cell lines that produce therapeutic proteins with recombinase-mediated cassette exchange.


Assuntos
Marcação de Genes/métodos , RNA não Traduzido/genética , Receptores CCR5/genética , Transgenes/genética , Sistemas CRISPR-Cas/genética , Genes Reporter , Loci Gênicos , Células HEK293 , Humanos , Plasmídeos/genética , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA Mensageiro/metabolismo , Vírus 40 dos Símios/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...