Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(11): 18018-18031, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221610

RESUMO

This paper investigated the effects of femtosecond laser beam polarization on ablation efficiency and microstructure symmetricity for 64FeNi alloy (Invar) sheet processing to fabricate fine metal masks. It was found that the ablation efficiency for linear polarization was approximately 15% higher than that for circular polarization due to electric field enhancement induced by low-spatial-frequency laser-induced periodic surface structures (LIPSS). The hole size and sidewall taper angles for the microstructures generated by linear polarization were asymmetric, whereas those generated by circular polarization were symmetric due to non-oriented LIPSS. The asymmetric and symmetric three-dimensional microstructure profiles, measured by using a confocal laser scanning microscope, were verified by employing an analytical model that was derived using the total input fluence and the ablation rates for linear and circular polarizations, respectively.

2.
Opt Express ; 29(13): 20545-20557, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266142

RESUMO

This paper reports a mechanism to suppress nanoparticle (NP) generation during femtosecond laser processing of 64FeNi alloy (Invar) to realize high precision fine metal masks. Nanoparticle redeposition during processing can reduce precision and ablation efficiency. Since Gaussian laser beams have spatially distributed fluence, NP types can vary even within a laser spot. Surface areas irradiated by the beam center with high peak fluence can be decomposed into vapor and liquid droplets by phase explosion; whereas positions irradiated by the beam edge, where fluence is close to ablation threshold, can be decomposed by stress confinement under the surface, known as spallation. Spallation characteristics were verified from target surfaces covered with exfoliation and fragments. It occurred above a certain number of pulses, indicating a significant incubation effect. Spallation induced NPs, i.e., agglomerated fragments, distort micro-hole size and shape, but were effectively suppressed by increasing repetition rate, due to increased surface temperature, i.e., heat accumulation. Suppression also occurred from direct sample heating using a hot plate. Thus, thermal energy can relax stress confinement and inhibit spallation induced NPs. Numerical simulation for heat accumulation also confirmed that suppression arises from thermal effects. Increasing repetition rate also helped to increase productivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...