Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 349: 140857, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070616

RESUMO

Growing concerns exist about increasing chemical usage and the potential health risks. Developing an efficient strategy to evaluate or predict the toxicity of chemicals is necessary. The mitochondria are essential organelles for cell maintenance and survival but also serve as one of the main targets of toxic chemicals. Mitochondria play an important role in the pathology of respiratory disease, and many environmental chemicals may induce impairment of the respiratory system through mitochondrial damage. This study aimed to develop integrated in vitro approaches to identify chemicals that could induce adverse health effects by increasing mitochondria-mediated oxidative stress using the H441 cells, which have a club-cell-like phenotype. Twenty-six environmental toxicants (biocides, phthalates, bisphenols, and particles) were tested, and each parameter was compared with eleven reference compounds. The inhibitory concentrations (IC20 and IC50) and benchmark doses (BMD) of the tested compounds were estimated from three in vitro assays, and the toxic concentration was determined. At the lowest IC20, the effects of compounds on mitochondrial reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) were compared. Principal component analysis and k-mean clustering were performed to cluster the chemicals that had comparable effects on the cells. Chemicals that induce mitochondrial damage at different concentrations were used for an in-depth high-tier assessment and classification as electron transport system (ETS) uncoupling or inhibiting agents. Additionally, using in vitro to in vivo extrapolation (IVIVE) tools, equivalent administration doses and maximum plasma concentrations of tested compounds in human were estimated. This study suggests an in vitro approach to identifying mitochondrial damage by integrating several in vitro toxicity tests and calculation modeling.


Assuntos
Substâncias Perigosas , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Substâncias Perigosas/toxicidade , Transporte de Elétrons , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
2.
Food Chem Toxicol ; 181: 114084, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37816477

RESUMO

Parabens are widely used as preservatives, added to products commonly used by humans, and to which individuals are exposed orally or dermally. Once absorbed into the body, parabens move into the bloodstream and travel through the systemic circulation. We investigated the potential impact of parabens on the enhanced generation of thrombin by red blood cells (RBCs), which are the principal cellular components of blood. We tested the effects of methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), butylparaben (BuP), and p-hydroxybenzoic acid on freshly isolated human RBCs. BuP and simultaneous exposure to BuP and PrP significantly increased phosphatidylserine (PS) externalization to the outer membranes of RBCs. PS externalization by BuP was found to be mediated by increasing intracellular Ca2+ levels in RBCs. The morphological changes in BuP-treated RBCs were observed under an electron microscope. The BuP-exposed RBCs showed increased thrombin generation and adhesion to endothelial cells. Additionally, the externalization of PS exposure and thrombin generation in BuP-treated RBCs were more susceptible to high shear stress, which mimics blood turbulence under pathological conditions. Collectively, we observed that BuP induced morphological and functional changes in RBCs, especially under high shear stress, suggesting that BuP may contribute to the thrombotic risk via procoagulant activity in RBCs.


Assuntos
Parabenos , Fosfatidilserinas , Humanos , Parabenos/toxicidade , Cálcio/farmacologia , Trombina/farmacologia , Células Endoteliais , Eritrócitos
3.
Toxicol Res ; 38(4): 479-486, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36277357

RESUMO

The pharmacological or toxicological activities of the degradation products of drug candidates have been unaddressed during the drug development process. Ischemic stroke accounts for 80% of all strokes and is responsible for considerable mortality and disability worldwide. Despite decades of research on neuroprotective agents, tissue plasminogen activators (t-PA), a thrombolytic agent, remains the only approved acute stroke pharmacological therapy. NXY-059, a free radical scavenger, exhibited striking neuroprotective properties in preclinical models and met all the criteria established by the Stroke Academic Industry Roundtable (STAIR) for a neuroprotective agent. In phase 3 clinical trials, NXY-059 exhibited significant neuroprotective effects in one trial (SAINT-I), but not in the second (SAINT-II). Some have hypothesized that N-t-butyl hydroxylamine (NtBHA), a breakdown product of NXY-059 was the actual neuroprotective agent in SAINT-I and that changes to the formulation of NXY-059 to prevent its breakdown to NtBHA in SAINT -II was the reason for the lack of efficacy. We evaluated the neuroprotective effect of NtBHA in N-methyl-D-aspartate (NMDA)-treated primary neurons and in rat focal cerebral ischemia. NtBHA significantly attenuated infarct volume in rat transient focal ischemia, and attenuated NMDA-induced cytotoxicity in primary cortical neurons. NtBHA also reduced free radical generation and exhibited mitochondrial protection.

4.
Toxicol Lett ; 366: 45-57, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35803525

RESUMO

The mixture of 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT, chloromethylisothiazolinone) and 2-methyl-4-isothiazolin-3-one (MIT, methylisothiazolinone) is a commonly used biocide in consumer products. Despite the health issues related to its usage in cosmetics and humidifier disinfectants (HD), understanding its adverse outcome is still limited. Using in vitro cell lines and ex vivo rat models, we examined the effects of CMIT/MIT on the cellular redox homeostasis and energy metabolism in the brain microvascular endothelium, a highly restrictive interface between the bloodstream and brain. In murine bEND.3 and human hCMEC/D3, CMIT/MIT significantly amplified the mitochondrial-derived oxidative stress causing disruption of the mitochondrial membrane potential and oxidative phosphorylation at a sub-lethal concentration (1 µg/mL) or treatment duration (1 h). In addition, CMIT/MIT significantly increased a dynamic imbalance between mitochondrial fission and fusion, and endogenous pathological stressors significantly potentiated the CMIT/MIT-induced endothelial dysfunction. Notably, in the brain endothelium isolated from intravenously CMIT/MIT-administered rats, we observed significant mitochondrial damage and decreased tight junction protein. Taken together, we report that CMIT/MIT significantly impaired mitochondrial function and dynamics resulting in endothelial barrier dysfunction, giving an insight into the role of mitochondrial damage in CMIT/MIT-associated systemic health effects.


Assuntos
Desinfetantes , Animais , Encéfalo , Linhagem Celular , Desinfetantes/toxicidade , Células Endoteliais , Endotélio , Humanos , Camundongos , Ratos , Tiazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...