Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 2): 132366, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759852

RESUMO

Red grapes possess multiple bioactivities but are highly susceptible to spoilage due to the lack of efficient preservation techniques. Plasma-activated water (PAW) treatment and the incorporation of antioxidants in bio-based coatings are promising methods for preserving produce. In this study, we tested a novel combination by incorporating ascorbic acid (AA) into a chitosan-based edible coating (CH) and combining it with plasma-activated water (PAW) treatment (CA-PAW) before simulating transport vibrations to extend the shelf-life of red grapes. The results from storage at 4 °C for 20 d indicated that the CA-PAW treatment reduced microbial counts by 2.62 log10 CFU/g for bacteria, 1.72 log10 CFU/g for yeasts and molds, and 1.1 log10 CFU/g for coliforms, in comparison to the control group treated with sterile deionized water. Total phenols and total flavonoid content were the highest observed, at 111.2 mg GAE/100 g and 262.67 mg RE/100 g, respectively. This treatment also inhibited water migration and erosion, and reduced damage to cell structure. Microstructural observations revealed that the CH coating on the surface of red grapes diminished the degradation of bioactive components. In conclusion, the CA-PAW treatment effectively inhibited the adverse physiological changes caused by vibration and mechanical damage to red grapes, maintained their nutritional and sensory qualities, and extended the shelf life by at least 8 d.


Assuntos
Ácido Ascórbico , Quitosana , Conservação de Alimentos , Vitis , Água , Quitosana/química , Vitis/química , Ácido Ascórbico/química , Conservação de Alimentos/métodos , Água/química , Antioxidantes/química , Antioxidantes/farmacologia , Fenóis/química , Meios de Transporte
2.
Foods ; 13(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672834

RESUMO

The management of vegetable waste and byproducts is a global challenge in the agricultural industry. As a commonly consumed vegetable crop, cruciferous vegetables marked higher amounts of wastage during their supply chain processes, with a significant contribution from cabbage, cauliflower, and broccoli. Therefore, the sustainable and resource-efficient utilization of discarded materials is crucial. This review explores potential applications of cruciferous vegetable waste and byproducts, spotlighting cabbage, cauliflower, and broccoli in food, medicinal, and other industries. Their significance of being utilized in value-added applications is addressed, emphasizing important biomolecules, technologies involved in the valorization process, and future aspects of practical applications. Cabbage, cauliflower, and broccoli generate waste and low-processing byproducts, including leaves, stems, stalks, and rot. Most of them contain high-value biomolecules, including bioactive proteins and phytochemicals, glucosinolates, flavonoids, anthocyanins, carotenoids, and tocopherols. Interestingly, isothiocyanates, derived from glucosinolates, exhibit strong anti-inflammatory and anticancer activity through various interactions with cellular molecules and the modulation of key signaling pathways in cells. Therefore, these cruciferous-based residues can be valorized efficiently through various innovative extraction and biotransformation techniques, as well as employing different biorefinery approaches. This not only minimizes environmental impact but also contributes to the development of high-value-added products for food, medicinal, and other related industries.

3.
Food Funct ; 14(12): 5492-5515, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37278147

RESUMO

The emergence of pathogens resistant to conventional antibiotics and the growing interest in developing alternative natural antimicrobial agents have prompted a search for plant-derived antimicrobial peptides (PAMPs) in recent years. PAMPs have unique antimicrobial properties, including broad-spectrum activity, rapid killing, and cell selectivity, making them promising candidates for the treatment of animal and human infections caused by pathogens. PAMPs primarily target cell membranes or intracellular components in a variety of ways, which enables them to effectively kill a wide range of microorganisms and reduce the chance of pathogens developing resistance. This article reviewed the classification of PAMPs and the progress of research on the isolation and purification of PAMPs. In addition, a focus was placed on the mechanisms of action of PAMPs, the potential toxicity of PAMPs and their functions and applications in food, agricultural production, animal feed additives, medical, and other possible fields. Finally, the challenges associated with PAMPs applications have been discussed along with molecular-based delivery and chemical modification strategies to overcome these limitations. This review highlights the potential applications of PAMPs, which will not only help to reduce the misuse of antibiotics, but will also be useful for the development of new antimicrobial agents in the future.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Animais , Humanos , Moléculas com Motivos Associados a Patógenos , Anti-Infecciosos/farmacologia , Antibacterianos/química , Plantas , Ração Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...