Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(18): 6324-6336, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37093655

RESUMO

In this article, we present the synthesis of calcium sulfate nanoparticles (CaSO4 NPs) from waste chalk powder by the calcination method. These CaSO4 NPs were utilized for the construction of a mesoporous graphitic carbon nitride-calcium sulfate (mpg-C3N4-CaSO4) photocatalyst. Synthesized materials were confirmed by several characterization techniques. The photocatalytic performance of the synthesized samples was tested by the degradation of methylene blue (MB) in the presence of both UV-vis light and sunlight. The efficiency of photocatalytic degradation of MB dye using the optimized mpg-C3N4-CaSO4-2 composite reached 91% within 90 min in the presence of UV-vis light with superb photostability and recyclability after five runs compared to individual mpg-C3N4 and CaSO4 NPs and reached 95% within 120 min under sunlight. Histotoxicological studies on fish liver and ovary indicated that the dye containing the solution damaged the structure of the liver and ovary tissues, whereas the photodegraded solution of MB was found to be less toxic and caused negligible alterations in their typical structure similar to the control group.

2.
Langmuir ; 38(44): 13543-13557, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36282958

RESUMO

The waste of tungsten filament materials in the environment is one of the reasons for environmental pollution, and it is very dangerous to animals and plants. To date, not much attention has been given to its utility or recyclability. Herein, the present work reported the synthesis of tungsten trioxide nanoparticles (WO3 NPs) by the utilization of cost-free waste tungsten filament by a simple calcination method. A mesoporous graphitic carbon nitride-tungsten trioxide (mpg-C3N4-WO3) composite designed from the WO3 NPs produced from tungsten filament waste and thiourea as a carbon and nitrogen precursor by a one-step calcination method. The synthesized samples were characterized and confirmed by different characterization techniques. The photocatalytic behavior of the synthesized mpg-C3N4-WO3 composite was assessed, with respect to the effect of initial pH, amount of photocatalyst, dye concentration, and reaction time, as well for the degradation of Methylene Blue (MB) dye under sunlight. The best photocatalytic performance (92%) was achieved using mpg-C3N4-WO3 with experimental condition ([photocatalyst] = 100 mg/L, [MB]0 = 10 mg/L, pH 8, and time = 120 min) under sunlight irradiation with excellent photostability than that of isolated mpg-C3N4 and WO3 NPs. The histotoxicological studies also showed that the photodegraded products of MB were found to be nontoxic and did not structurally changes in the gill architecture as well as brain tissues of freshwater fish Labeo rohita.


Assuntos
Resíduo Eletrônico , Purificação da Água , Tungstênio/toxicidade , Tungstênio/química , Catálise , Purificação da Água/métodos , Azul de Metileno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...