Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 212(11): 1807-1818, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639584

RESUMO

Drug-induced acute renal failure (ARF) is a public health concern that hinders optimal drug therapy. However, pathological mechanisms of drug-induced ARF remain to be elucidated. Here, we show that a pathological process of drug-induced ARF is mediated by proinflammatory cross-talk between kidney tubular cells and macrophages. Both polymyxin B and colistin, polypeptide antibiotics, frequently cause ARF, stimulated the ERK and NF-κB pathways in kidney tubular cells, and thereby upregulated M-CSF and MCP-1, leading to infiltration of macrophages into the kidneys. Thereafter, the kidney-infiltrated macrophages were exposed to polypeptide antibiotics, which initiated activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. Interestingly, blockade of the NLRP3 activation clearly ameliorated the pathology of ARF induced by polypeptide antibiotics, suggesting that a combination of the distinct cellular responses to polypeptide antibiotics in kidney tubular cells and macrophages plays a key role in the pathogenesis of colistin-induced ARF. Thus, our results provide a concrete example of how drugs initiate ARF, which may give insight into the underlying pathological process of drug-induced ARF.


Assuntos
Injúria Renal Aguda , Antibacterianos , Inflamassomos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Camundongos , Inflamassomos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Polimixina B/farmacologia , Camundongos Endogâmicos C57BL , Colistina/efeitos adversos , Colistina/farmacologia , Peptídeos/farmacologia , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Túbulos Renais/efeitos dos fármacos , Masculino , NF-kappa B/metabolismo
2.
Cell Death Discov ; 10(1): 74, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346947

RESUMO

Overactivation of poly (ADP-ribose) polymerase-1 (PARP-1) triggers a noncanonical form of programmed cell death (PCD) called parthanatos, yet the mechanisms of its induction are not fully understood. We have recently demonstrated that the aggresome-like induced structures (ALIS) composed of the autophagy receptor SQSTM1/p62 and K48-linked polyubiquitinated proteins (p62-based ALIS) mediate parthanatos. In this study, we identified the D1 dopamine receptor agonist YM435 as a unique parthanatos inhibitor that acts as the disaggregating agent for the p62-based ALIS. We found that YM435 structurally reduces aggregability of the ALIS, and then increases its hydrophilicity and liquidity, which prevents parthanatos. Moreover, dopamine and L-DOPA, a dopamine precursor, also prevented parthanatos by reducing the aggregability of the ALIS. Together, these observations suggest that aggregability of the p62-based ALIS determines the sensitivity to parthanatos, and the pharmacological properties of YM435 that reduces the aggregability may be suitable for therapeutic drugs for parthanatos-related diseases such as neurodegenerative diseases.

3.
Pharmacol Ther ; 248: 108477, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37330113

RESUMO

Nuclear receptors (NR) collectively regulate several biological functions in various organs. While NRs can be characterized by activation of the transcription of their signature genes, they also have other diverse roles. Although most NRs are directly activated by ligand binding, which induces cascades of events leading to gene transcription, some NRs are also phosphorylated. Despite extensive investigations, primarily focusing on unique phosphorylation of amino acid residues in different NRs, the role of phosphorylation in the biological activity of NRs in vivo has not been firmly established. Recent studies on the phosphorylation of conserved phosphorylation motifs within the DNA- and ligand-binding domains confirmed has indicated the physiologically relevance of NR phosphorylation. This review focuses on estrogen and androgen receptors, and highlights the concept of phosphorylation as a drug target.


Assuntos
Proteínas de Ligação a DNA , Receptores Citoplasmáticos e Nucleares , Humanos , Fosforilação , Ligantes , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo
4.
J Toxicol Sci ; 47(6): 249-255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35650141

RESUMO

Retinoic acid, an active form of vitamin A, plays very important roles in mammalian embryogenesis. The concentration of retinoic acid is extremely low and strictly regulated by enzymes of cytochrome P450 (CYP) family, CYP26s (CYP26A1, CYP26B1 and CYP26C1) in the cells. Therefore, it is thought that changes in CYP26s activities due to exposure to a wide variety of drugs and chemicals exhibit teratogenicity. In this study, to easily detect the changes in retinoic acid level, we constructed an adenovirus-mediated reporter assay system using the promoter region of the CYP26A1 gene and inserting retinoic acid response element (RARE) and retinoid X response element (RXRE) into the downstream of the luciferase gene of reporter plasmid, which highly increased the response to retinoic acid. Reporter activity significantly increased in a concentration-dependent manner with retinoic acid; this increase was also observed at least after treatment with a very low concentration of 1 nM retinoic acid. This increase was suppressed by the accelerated metabolism of retinoic acid due to the overexpression of CYP26A1; however, this suppression was almost completely suspended by treatment with talarozole, a CYP26 inhibitor. In conclusion, the reporter assay system constructed using the induction of CYP26A1 expression is a risk assessment system that responds to extremely low concentrations of retinoic acid and is useful for assessing the excess vitamin A mediated teratogenicity caused by various chemicals at the cellular level.


Assuntos
Adenoviridae , Teratogênicos , Tretinoína , Adenoviridae/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Genes Reporter , Humanos , Células MCF-7 , Regiões Promotoras Genéticas , Ácido Retinoico 4 Hidroxilase/genética , Teratogênicos/análise , Tretinoína/análise , Vitamina A
5.
Methods Mol Biol ; 2418: 41-51, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35119658

RESUMO

Estrogen receptor α (ERα) conserves a phosphorylation motif at Serine 216. This site constitutes a protein kinase C phosphorylation motif located within the DNA binding domain (DBD) of ERα. The liver plays a critical role in the regulation of metabolism of various xenobiotics, fatty acids, and cholesterol or endogenous compounds. Moreover, numerous metabolizing enzymes are mainly expressed in the liver. In this chapter, we describe several practical experimental procedures confirming that mouse ERα is phosphorylated at serine 216 in livers upon phenobarbital (PB) treatment. Also, this phosphorylation regulates the expression of estrogen sulfotransferase gene (SULT1E1) which has an important role to sulfate and inactivate estrogen. In response to PB, the conserved motif within the DBD activates the Sult1e1 gene. When this motif was mutated, the activation of Sult1e1 was suppressed significantly. This chapter also describes the use of a phospho-peptide antibody (αP-S216) in the chromatin immunoprecipitation (ChIP) assay, and the co-immunoprecipitation (Co-IP) assay visualized by Western blot analysis.


Assuntos
Receptor alfa de Estrogênio , Serina , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Imunoprecipitação , Fígado/metabolismo , Camundongos , Fosforilação/fisiologia , Serina/metabolismo
6.
Methods Mol Biol ; 2418: 63-75, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35119660

RESUMO

Serine 216 constitutes a protein kinase C phosphorylation motif located within the DNA binding domain of estrogen receptor α (ERα). In this chapter, we present experimental procedures confirming that mouse ERα is phosphorylated at serine 216 in peripheral blood neutrophils and in neutrophils that infiltrate the uterus, as well as the role of phosphoserine 216 in neutrophil migration. A phospho-peptide antibody (αP-S216) was utilized in Western blot, immunohistochemistry, and double immunofluorescence staining to detect this phosphorylation of an endogenous ERα. Both immunohistochemistry (with αP-S216 or neutrophil marker Ly6G antibody) and double immunofluorescence staining of mouse uterine sections prepared from C3H/HeNCrIBR females revealed that phosphorylated ERα was expressed in all infiltrating neutrophils during hormonal cycles but not in any other of the other uterine cells. Neutrophils infiltrate the uterus from the bloodstream. White blood cells (WBC) were prepared from peripheral blood of C3H/HeNCrIBR females or males and double immunostained. Blood neutrophils also expressed phosphorylated ERα but in only about 20% of cells in both sexes. Only the neutrophils expressing phosphorylated ERα spontaneously migrated in in vitro Transwell migration assays and infiltrated the uterus in mice.


Assuntos
Receptor alfa de Estrogênio , Serina , Animais , Receptor alfa de Estrogênio/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C3H , Neutrófilos/metabolismo , Fosforilação , Serina/metabolismo
7.
Cell Commun Signal ; 18(1): 117, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727504

RESUMO

BACKGROUND: Estrogen receptor α (ERα) has been suggested to regulate anti-inflammatory signaling in brain microglia, the only resident immune cells in the brain. ERα conserves the phosphorylation motif at Ser216 within the DNA binding domain. Previously, Ser216 was found to be phosphorylated in neutrophils infiltrating into the mouse uterus and to enable ERα to regulate migration. Given the implication of this phosphorylation in immune regulation, ERα was examined in mouse microglia to determine if Ser216 is phosphorylated and regulates microglia's inflammation. It was found that Ser216 was constitutively phosphorylated in microglia and demonstrated that in the absence of phosphorylated ERα in ERα KI brains microglia inflamed, confirming that phosphorylation confers ERα with anti-inflammatory capability. ERα KI mice were obese and weakened motor ability. METHODS: Mixed glia cells were prepared from brains of 2-days-old neonates and cultured to mature and isolate microglia. An antibody against an anti-phospho-S216 peptide of ERα (αP-S216) was used to detect phosphorylated ERα in double immunofluorescence staining with ERα antibodies and a microglia maker Iba-1 antibody. A knock-in (KI) mouse line bearing the phosphorylation-blocked ERα S216A mutation (ERα KI) was generated to examine inflammation-regulating functions of phosphorylated ERα in microglia. RT-PCR, antibody array, ELISA and FACS assays were employed to measure expressions of pro- or anti-inflammatory cytokines at their mRNA and protein levels. Rotarod tests were performed to examine motor connection ability. RESULTS: Double immune staining of mixed glia cells showed that ERα is phosphorylated at Ser216 in microglia, but not astrocytes. Immunohistochemistry with an anti-Iba-1 antibody showed that microglia cells were swollen and shortened branches in the substantial nigra (SN) of ERα KI brains, indicating the spontaneous activation of microglia as observed with those of lipopolysaccharide (LPS)-treated ERα WT brains. Pro-inflammatory cytokines were up-regulated in the brain of ERα KI brains as well as cultured microglia, whereas anti-inflammatory cytokines were down-regulated. FACS analysis showed that the number of IL-6 producing and apoptotic microglia increased in those prepared from ERα KI brains. Times of ERα KI mice on rod were shortened in Rotarod tests. CONCLUSIONS: Blocking of Ser216 phosphorylation aggravated microglia activation and inflammation of mouse brain, thus confirming that phosphorylated ERα exerts anti-inflammatory functions. ERα KI mice enable us to further investigate the mechanism by which phosphorylated ERα regulates brain immunity and inflammation and brain diseases. Video abstract.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Fosfosserina/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Técnicas de Introdução de Genes , Camundongos , Atividade Motora , Fosforilação , Tempo de Reação
8.
Lab Invest ; 99(10): 1470-1483, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31152145

RESUMO

Retinoid X receptor α (RXRα) has a conserved phosphorylation motif at threonine 162 (humans) and threonine 167 (mice) within the DNA-binding domain. Here we have generated RXRα knock-in mice (RxrαT167A) bearing a single mutation of Thr 167 to alanine and examined the roles of Thr 167 in the regulation of energy metabolism within adipose, muscle, and liver tissues. RxrαT167A mice exhibited down-regulation of metabolic pathways converting glucose to fatty acids, such as acetyl-CoA carboxylase in the white adipose tissue (WAT) and ATP citrate lyase in the muscle. They also reduced gene expression for genes related to fatty acid catabolism and triglyceride synthesis in WAT and controlled heat factors such as adrenergic receptor ß1 in muscles. In contrast, hepatic gluconeogenic pathways and synthetic pathways related to fatty acids remained unaffected by this mutation. Expression of multiple genes that were affected by the Thr 167 mutation in adipose tissue exhibited clear response to LG100268, a synthetic RXR agonist. Thus, the altered gene expression in mutant mice adipose appeared to be a direct effect of RXRα Thr 167 mutation and by some secondary effect of the mutation. Blood glucose levels remained normal in RxrαT167A during feeding, as observed with RXRα wild-type mice. However, RxrαT167A mice exhibited an attenuated decrease of blood glucose levels that occurred after fasting. This attenuation correlated with a concomitant down-regulation of lipid metabolism in WAT and was associated with RXRα phosphorylation at Thr 167. Thus, Thr 167 enabled RXRα to coordinate these three organs for regulation of energy metabolism and maintenance of glucose homeostasis.


Assuntos
Metabolismo Energético/genética , Privação de Alimentos/fisiologia , Receptor X Retinoide alfa/genética , Animais , Glicemia/genética , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , DNA/metabolismo , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Fosforilação , Receptor X Retinoide alfa/metabolismo
9.
Drug Metab Dispos ; 46(6): 860-864, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29626075

RESUMO

Cytosolic sulfotransferases (SULTs) catalyze sulfation and play essential roles in detoxification of xenobiotics as well as inactivation of endobiotics. SULT4A1, which was originally isolated as a brain-specific sulfotransferase, is the most highly conserved isoform among SULTs in vertebrates. Here, expression of SULT4A1 was examined neuron enriched and neuron-glia mixed cells derived from mouse embryo brains at day 14 gestation and mixed glia from 2-day-old neonate brains. Western blots showed an increase of SULT4A1 expression as neurons maturated. Reverse-transcription polymerase chain reaction and agarose gel analysis found two different forms (variant and wild type) of SULT4A1 mRNA in neurons; the level of wild type correlated with the protein level of SULT4A1. SULT1E1 was not expressed in mouse brains, neuron-enriched cells, or mixed glia cells. SULT1A1 protein was only detected in adult brains. Immunofluorescence staining of neuron-glia mixed cells confirmed selective expression of SULT4A1 in neurons, including dopaminergic neurons, but not in either astrocytes or microglia. Thus, SULT4A1 is a neuron-specific sulfotransferase and may play a role in neuronal development.


Assuntos
Neurônios/metabolismo , Sulfotransferases/metabolismo , Animais , Encéfalo/metabolismo , Citosol/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo
10.
Methods Mol Biol ; 1366: 413-424, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26585153

RESUMO

Serine 216 constitutes a protein kinase C phosphorylation motif located within the DNA binding domain of estrogen receptor α (ERα). In this chapter we present experimental procedures confirming that mouse ERα is phosphorylated at serine 216 in peripheral blood neutrophils and in neutrophils that infiltrate the uterus, as well as the role of phosphoserine 216 in neutrophil migration. A phospho-peptide antibody (αP-S216) was utilized in Western blot, immunohistochemistry, and double immunofluorescence staining to detect this phosphorylation of an endogenous ERα. Both immunohistochemistry (with αP-S216 or neutrophil marker Ly6G antibody) and double immunofluorescence staining of mouse uterine sections prepared from C3H/HeNCrIBR females revealed that phosphorylated ERα was expressed in all infiltrating neutrophils during hormonal cycles but not in any other of the other uterine cells. Neutrophils infiltrate the uterus from the blood stream. White blood cells (WBC) were prepared from peripheral blood of C3H/HeNCrIBR females or males and double immunostained. Blood neutrophils also expressed phosphorylated ERα but in only about 20 % of cells in both sexes. Only the neutrophils expressing phosphorylated ERα spontaneously migrated in in vitro Transwell migration assays and infiltrated the uterus in mice.


Assuntos
Movimento Celular , Receptor alfa de Estrogênio/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Útero/metabolismo , Animais , Western Blotting , Ensaios de Migração Celular , Receptor alfa de Estrogênio/sangue , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C3H , Fosforilação , Proteína Quinase C/metabolismo , Serina , Transdução de Sinais , Fluxo de Trabalho
11.
Toxicol Lett ; 219(2): 143-50, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23528251

RESUMO

Hypoxia inducible factor (HIF) and 5'-AMP-activated protein kinase are often activated under similar physiological conditions. Constitutive androstane receptor (CAR) translocates into the nucleus in accordance with 5'-AMP-activated protein kinase and thus confers transactivation. The aim of the present study was to investigate a possible link between CAR and HIFα. Phenobarbital (PB), a typical CAR activator, increased the gene expression of HIF-target genes in the livers of mice, including erythropoietin, heme oxygenase-1 and vascular endothelial growth factor-a. PB induced an accumulation of nuclear HIF-1α and an increase in the HIF-responsive element-mediated transactivation in HepG2 cells. Cobalt chloride, a typical HIF activator, induced the gene expression of CAR-target genes, including cyp2b9 and cyp2b10, an accumulation of nuclear CAR and an increase in the PB-responsive enhancer module-mediated transactivation in the mouse liver. Immunoprecipitation-immunoblot and chromatin immunoprecipitation analyses suggest that CAR binds to the PB-responsive enhancer module with HIF-1α in the liver of untreated mice and that the complex dissociates upon PB treatment. Taken together these results suggest that CAR and HIF-α interact and reciprocally modulate the functions of each other.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Receptor Cross-Talk/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Animais , Western Blotting , Imunoprecipitação da Cromatina , Cobalto/farmacologia , Receptor Constitutivo de Androstano , Regulação da Expressão Gênica/genética , Genes Reporter/efeitos dos fármacos , Humanos , Fator 1 Induzível por Hipóxia/genética , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C3H , Fenobarbital/farmacologia , Plasmídeos/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Citoplasmáticos e Nucleares/genética
12.
PLoS One ; 8(12): e84462, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24386386

RESUMO

BACKGROUND: Whereas estrogen receptors are present in immune cells, it is not known if they are phosphorylated to regulate immune cell functions. Here we determined the phosphorylation status of estrogen receptor α (ERα) at residue serine 216 in mouse neutrophils and examined its role in migration and infiltration. Serine 216 is the conserved phosphorylation site within the DNA binding domains found in the majority of nuclear receptors. METHODOLOGY/PRINCIPAL FINDINGS: A phospho-peptide antibody specific to phosphorylated serine 216 and ERα KO mice were utilized in immunohistochemistry, double immuno-staining or Western blot to detect phosphorylation of ERα in peripheral blood as well as infiltrating neutrophils in the mouse uterus. Transwell assays were performed to examine migration of neutrophils. An anti-Ly6G antibody identified neutrophils. About 20% of neutrophils expressed phosphorylated ERα at serine 216 in peripheral white blood cells (WBC) from C3H/HeNCrIBR females. Phosphorylation was additively segregated between C3H/HeNCrIBR and C57BL/6 females. Only neutrophils that expressed phosphorylated ERα migrated in Transwell assays as well as infiltrated the mouse uterus during normal estrous cycles. CONCLUSIONS/SIGNIFICANCE: ERα was phosphorylated at serine 216 in about 20% of mouse peripheral blood neutrophils. Only those that express phosphorylated ERα migrate and infiltrate the mouse uterus. This phosphorylation was the first to be characterized in endogenous ERα found in normal tissues and cells. Phosphorylated ERα may have opened a novel research direction for biological roles of phosphorylation in ERα actions and can be developed as a drug target for treatment of immune-related diseases.


Assuntos
Receptor alfa de Estrogênio/imunologia , Infiltração de Neutrófilos , Neutrófilos/imunologia , Útero/imunologia , Animais , Feminino , Camundongos , Neutrófilos/citologia , Fosforilação/imunologia , Serina/imunologia , Útero/citologia
13.
PLoS One ; 7(7): e41291, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815988

RESUMO

Constitutive androstane receptor (CAR) is a nuclear receptor that regulates the transcription of target genes, including CYP2B and 3A. Phenobarbital activates CAR, at least in part, in an AMP-activated protein kinase (AMPK)-dependent manner. However, the precise mechanisms underlying phenobarbital activation of AMPK are still unclear. In the present study, it was demonstrated that phenobarbital administration to mice decreases hepatic miR-122, a liver-enriched microRNA involved in both hepatic differentiation and function. The time-course change in the phenobarbital-mediated down-regulation of miR-122 was inversely correlated with AMPK activation. Phenobarbital decreased primary miR-122 to approximately 25% of the basal level as early as 1 h and suppressed transactivity of mir-122 promoter in HuH-7 cells, suggesting that the down-regulation occurred at the transcriptional level. AMPK activation by metformin or 5-aminoimidazole-4-carboxamide 1-ß-D-ribonucleoside had no evident effect on miR-122 levels. An inhibitory RNA specific for miR-122 increased activated AMPK and CAR-mediated trancactivation of the phenobarbital-responsive enhancer module in HepG2 cells. Conversely, the reporter activity induced by the ectopic CAR was almost completely suppressed by co-transfection with the miR-122 mimic RNA. GFP-tagged CAR was expressed in the cytoplasm in addition to the nucleus in the majority of HuH-7 cells in which miR-122 was highly expressed. Co-transfection of the mimic or the inhibitor RNA for miR-122 further increased or decreased, respectively, the number of cells that expressed GFP-CAR in the cytoplasm. Taken together, these results suggest that phenobarbital-mediated down-regulation of miR-122 is an early and important event in the AMPK-dependent CAR activation and transactivation of its target genes.


Assuntos
Regulação para Baixo , MicroRNAs/biossíntese , Fenobarbital/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Adenilato Quinase/metabolismo , Animais , Receptor Constitutivo de Androstano , Células Hep G2 , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Plasmídeos/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional
14.
Steroids ; 77(5): 448-53, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22266331

RESUMO

Estrogen receptor α (ERα) can be phosphorylated at various residues, one of which is serine 212 in the DNA binding domain. The majority of human nuclear receptors conserves, as a motif, this serine residue within their DNA binding domain. Among these nuclear receptors, phosphorylation of the corresponding threonine 38 in the nuclear receptor CAR is essential for determining its activity [9]. Here, we have investigated the role of phosphorylated serine 212 in the regulation of ERα activity by comparing it with serine 236, another potential phosphorylation site within the DNA binding domain, and demonstrated that phosphorylation of serine 212 confers upon ERα a distinct activity regulating gene expression in Huh-7 cells. In Western blot analysis, wild type ERα and mutants ERα S212A, ERα S212D, ERα S236A and ERα S236D were equally expressed in the nucleus, thus indicating that phosphorylation does not determine nuclear localization of ERα. ERα S212D, but not ERα S236D, retained its capability of activating an ERE-reporter gene in luciferase assays. Similar results were also obtained for human ERß; the ERß S176D mutant retained its trans-activation activity, but the ERß S200D mutant did not. cDNA microarray and Ingenuity Pathway Analysis, employed on Huh-7 cells ectopically expressing either ERα S212A or ERα S212D, revealed that phosphorylation of serine 212 enabled ERα to regulate a unique set of genes and cellular functions.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Serina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Western Blotting , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/genética , Humanos , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina/genética , Ativação Transcricional
15.
Biochem J ; 401(3): 735-41, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17032173

RESUMO

CAR (constitutive androstane receptor) is a nuclear receptor that regulates the transcription of target genes, including CYP (cytochrome P450) 2B and 3A. The transactivation by CAR is regulated by its subcellular localization; however, the mechanism that governs nuclear translocation has yet to be clarified. It has been reported recently that AMPK (AMP-activated protein kinase) is involved in phenobarbital-mediated CYP2B induction in a particular culture system. We therefore investigated in vivo whether AMPK is involved in the activation of CAR-dependent gene expression. Immunoblot analysis using an antibody which recognizes Thr-172-phosphorylated AMPKalpha1/2 revealed phenobarbital-induced AMPK activation in rat and mouse livers as well. Phenobarbital, however, failed to increase the liver phospho-AMPK level of tumour-bearing rats in which CAR nuclear translocation had been impaired. In in vivo reporter gene assays employing PBREM (phenobarbital-responsive enhancer module) from CYP2B1, an AMPK inhibitor 8-bromo-AMP abolished phenobarbital-induced transactivation. In addition, Cyp2b10 gene expression was attenuated by 8-bromo-AMP. Forced expression of a dominant-negative mutant and the wild-type of AMPKalpha2 in the mouse liver suppressed and further enhanced phenobarbital-induced PBREM-reporter activity respectively. Moreover, the AMPK activator AICAR (5-amino-4-imidazolecarboxamide riboside) induced PBREM transactivation and an accumulation of CAR in the nuclear fraction of the mouse liver. However, AICAR and metformin, another AMPK activator, failed to induce hepatic CYP2B in mice and rats. These observations suggest that AMPK is at least partly involved in phenobarbital-originated signalling, but the kinase activation by itself is not sufficient for CYP2B induction in vivo.


Assuntos
Citocromo P-450 CYP2B1/metabolismo , Complexos Multienzimáticos/metabolismo , Fenobarbital/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Receptor Constitutivo de Androstano , Indução Enzimática/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Ratos , Ratos Endogâmicos F344 , Ratos Wistar
16.
FEBS Lett ; 579(17): 3560-4, 2005 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-15953603

RESUMO

Phenobarbital (PB) induction of CYP2B, a representative target gene of constitutive androstane receptor (CAR), has been observed to be attenuated in preneoplastic lesions of rat liver; however, molecular basis for this attenuation is poorly understood. In this report, we provide evidence indicating that the CAR expressed in the hepatic preneoplastic lesions of rats and mice was resistant to nuclear translocation and transactivation of the PB-responsive enhancer module upon PB treatment. These observations suggest that the attenuation of the induction of CYP2B by PB in hepatic preneoplastic lesions is evidently a consequence of impaired nuclear translocation of CAR.


Assuntos
Núcleo Celular/metabolismo , Citocromo P-450 CYP2B1/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/efeitos dos fármacos , Fenobarbital/farmacologia , Lesões Pré-Cancerosas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Núcleo Celular/química , Receptor Constitutivo de Androstano , Citocromo P-450 CYP2B1/genética , Regulação para Baixo , Fígado/patologia , Masculino , Camundongos , Ratos , Receptores Citoplasmáticos e Nucleares/análise , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...