Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 292(1): C545-52, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16885390

RESUMO

The strong correlation between a bone's architectural properties and the mechanical forces that it experiences has long been attributed to the existence of a cell that not only detects mechanical load but also structurally adapts the bone matrix to counter it. One of the most likely cellular candidates for such a "mechanostat" is the osteocyte, which resides within the mineralized bone matrix and is perfectly situated to detect mechanically induced signals. However, as osteocytes can neither form nor resorb bone, it has been hypothesized that they orchestrate mechanically induced bone remodeling by coordinating the actions of cells residing on the bone surface, such as osteoblasts. To investigate this hypothesis, we developed a novel osteocyte-osteoblast coculture model that mimics in vivo systems by permitting us to expose osteocytes to physiological levels of fluid shear while shielding osteoblasts from it. Our results show that osteocytes exposed to a fluid shear rate of 4.4 dyn/cm(2) rapidly increase the alkaline phosphatase activity of the shielded osteoblasts and that osteocytic-osteoblastic physical contact is a prerequisite. Furthermore, both functional gap junctional intercellular communication and the mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2 signaling pathway are essential components in the osteoblastic response to osteocyte communicated mechanical signals. By utilizing other nonosteocytic coculture models, we also show that the ability to mediate osteoblastic alkaline phosphatase levels in response to the application of fluid shear is a phenomena unique to osteocytes and is not reproduced by other mesenchymal cell types.


Assuntos
Junções Comunicantes/fisiologia , Osteoblastos/fisiologia , Osteócitos/fisiologia , Trifosfato de Adenosina/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Comunicação Celular/fisiologia , Linhagem Celular , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Dinoprostona/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Modelos Biológicos , Osteoblastos/citologia , Osteoblastos/enzimologia , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA