Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(7): e0284172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37478072

RESUMO

Aged mitochondrial function can be improved with long wavelength light exposure. This reduces cellular markers of inflammation and can improve system function from fly through to human. We have previously shown that with age there are increases in cytokine expression in mouse serum. Here, we ask what impact 670nm light has on this expression using a 40 cytokine array in blood serum and retina in C57Bl6 mice. 670nm exposure was delivered daily for a week in 12 month old mice. This shifted patterns of cytokine expression in both serum and retina inducing a selective increase. In serum examples of significant increases were found in IL (interleukins) 1α, IL-7, 10, 16, 17 along with TNF-α and CXCL (chemokines) 9 and 10. In retina the increases were again mainly in some IL's and CXCL's. A few cytokines were reduced by light exposure. Changes in serum cytokines implies that long wavelengths impact systemically even to unexposed tissues deep in the body. In the context of wider literature, increased cytokine expression may be protective. However, their upregulation by light merits further analysis as cytokines upregulation can also be negative and there are probably complex patterns of interaction in the dynamics of their expression.


Assuntos
Citocinas , Soro , Animais , Humanos , Camundongos , Idoso , Recém-Nascido , Citocinas/metabolismo , Soro/metabolismo , Camundongos Endogâmicos C57BL , Retina/metabolismo , Mitocôndrias/metabolismo
2.
PLoS One ; 18(5): e0273882, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37130143

RESUMO

Mitochondrial decline is a key feature of ageing. The retina has more mitochondria than any other tissue and ages rapidly. To understand human retinal ageing it is critical to examine old world primates that have similar visual systems to humans, and do so across central and peripheral regions, as there is evidence for early central decline. Hence, we examine mitochondrial metrics in young and ageing Macaca fascicularis retinae. In spite of reduced ATP with age, primate mitochondrial complex activity did not decline. But mitochondrial membrane potentials were reduced significantly, and concomitantly, mitochondrial membrane permeability increased. The mitochondrial marker Tom20 declined significantly, consistent with reduced mitochondria number, while VDAC, a voltage dependent anion channel and diffusion pore associated with apoptosis increased significantly. In spite of these clear age-related changes, there was almost no evidence for regional differences between the centre and the periphery in these mitochondrial metrics. Primate cones do not die with age, but many showed marked structural decline with vacuous spaces in proximal inner segments normally occupied by endoplasmic reticulum (ER), that regulate mitochondrial autophagy. In many peripheral cones, ER was displaced by the nucleus that transposed across the outer limiting membrane and could become embedded in mitochondrial populations. These data are consistent with significant changes in retinal mitochondria in old world primate ageing but provide little if any evidence that aged central mitochondria suffer more than those in the periphery.


Assuntos
Mitocôndrias , Retina , Animais , Humanos , Idoso , Retina/metabolismo , Envelhecimento/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Primatas , Macaca fascicularis , Canais de Ânion Dependentes de Voltagem/metabolismo
3.
J Biophotonics ; 15(10): e202200093, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35860879

RESUMO

Mitochondria are optically responsive organelles producing energy for cell function via adenosine triphosphate (ATP). But ATP production appears to vary over the day. Here we use Drosophila melanogaster to reveal daily shifts in whole animal ATP production in a tight 24 hours' time series. We show a marked production peak in the morning that declines around midday and remains low through afternoon and night. ATP production can be improved with long wavelengths (>660 nm), but apparently not at all times. Hence, we treated flies with 670 nm light to reveal optimum times. Exposures at 670 nm resulted in a significant ATP increases and a shift in the ATP/adenosine diphosphate (ADP) ratio at 8.00 and 11.00, whilst application at other time points had no effect. Hence, light-induced ATP increases appear limited to periods when natural production is high. In summary, long wavelength influences on mitochondria are conserved across species from fly to human. Determining times for their administration to improve function in ageing and disease are of key importance. This study progresses this problem.


Assuntos
Trifosfato de Adenosina , Drosophila melanogaster , Difosfato de Adenosina , Envelhecimento , Animais , Humanos , Mitocôndrias
4.
Sci Rep ; 11(1): 22872, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819619

RESUMO

Mitochondrial decline in ageing robs cells of ATP. However, animal studies show that long wavelength exposure (650-900 nm) over weeks partially restores ATP and improves function. The likely mechanism is via long wavelengths reducing nanoscopic interfacial water viscosity around ATP rota pumps, improving their efficiency. Recently, repeated 670 nm exposures have been used on the aged human retina, which has high-energy demands and significant mitochondrial and functional decline, to improve vision. We show here that single 3 min 670 nm exposures, at much lower energies than previously used, are sufficient to significantly improve for 1 week cone mediated colour contrast thresholds (detection) in ageing populations (37-70 years) to levels associated with younger subjects. But light needs to be delivered at specific times. In environments with artificial lighting humans are rarely dark-adapted, hence cone function becomes critical. This intervention, demonstrated to improve aged mitochondrial function can be applied to enhance colour vision in old age.


Assuntos
Trifosfato de Adenosina/metabolismo , Envelhecimento , Percepção de Cores , Visão de Cores , Luz , Mitocôndrias/efeitos da radiação , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Adulto , Fatores Etários , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Estimulação Luminosa , Células Fotorreceptoras Retinianas Cones/metabolismo , Limiar Sensorial , Fatores de Tempo
5.
PLoS One ; 16(9): e0257149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34478469

RESUMO

Increased blue light exposure has become a matter of concern as it has a range of detrimental effects, but the mechanisms remain unclear. Mitochondria absorb short wavelength light but have a specific absorbance at 420nm at the lower end of the human visual range. This 420nm absorption is probably due to the presence of porphyrin. We examine the impact of 420nm exposure on drosophila melanogaster mitochondria and its impact on fly mobility. Daily 15 mins exposures for a week significantly reduced mitochondrial complex activities and increased mitochondrial inner membrane permeability, which is a key metric of mitochondrial health. Adenosine triphosphate (ATP) levels were not significantly reduced and mobility was unchanged. There are multiple options for energy/time exposure combinations, but we then applied single 420nm exposure of 3h to increase the probability of an effect on ATP and mobility, and both were significantly reduced. ATP and mitochondrial membrane permeability recovered and over corrected at 72h post exposure. However, despite this, normal mobility did not return. Hence, the effect of short wavelengths on mitochondrial function is to reduce complex activity and increasing membrane permeability, but light exposure to reduce ATP and to translate into reduced mobility needs to be sustained.


Assuntos
Drosophila melanogaster/metabolismo , Drosophila melanogaster/efeitos da radiação , Mitocôndrias/metabolismo , Movimento/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , DNA Mitocondrial/metabolismo , Masculino , Camundongos , Membranas Mitocondriais/metabolismo , Permeabilidade
6.
J Gerontol A Biol Sci Med Sci ; 75(9): e49-e52, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32596723

RESUMO

The age spectrum of human populations is shifting toward the older with larger proportions suffering physical decline. Mitochondria influence the pace of aging as the energy they provide for cellular function in the form of adenosine triphosphate (ATP) declines with age. Mitochondrial density is greatest in photoreceptors, particularly cones that have high energy demands and mediate color vision. Hence, the retina ages faster than other organs, with a 70% ATP reduction over life and a significant decline in photoreceptor function. Mitochondria have specific light absorbance characteristics influencing their performance. Longer wavelengths spanning 650->1,000 nm improve mitochondrial complex activity, membrane potential, and ATP production. Here, we use 670-nm light to improve photoreceptor performance and measure this psychophysically in those aged 28-72 years. Rod and cone performance declined significantly after approximately 40 years of age. 670-nm light had no impact in younger individuals, but in those around 40 years and older, significant improvements were obtained in color contrast sensitivity for the blue visual axis (tritan) known to display mitochondrial vulnerability. The red visual axis (protan) improved but not significantly. Rod thresholds also improved significantly in those >40 years. Using specific wavelengths to enhance mitochondrial performance will be significant in moderating the aging process in this metabolically demanding tissue.


Assuntos
Envelhecimento/fisiologia , Mitocôndrias/fisiologia , Transtornos da Visão/etiologia , Adulto , Idoso , Envelhecimento/efeitos da radiação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos da radiação , Células Fotorreceptoras de Vertebrados/fisiologia , Células Fotorreceptoras de Vertebrados/efeitos da radiação
7.
Sci Rep ; 9(1): 12574, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467395

RESUMO

Photoreceptors have high metabolic demands and age rapidly, undermining visual function. We base our understanding mainly on ageing mice where elevated inflammation, extracellular deposition, including that of amyloid beta, and rod and cone photoreceptor loss occur, but cones are not lost in ageing primate although their function declines, revealing that primate and mouse age differently. We examine ageing primate retinae and show elevated stress but low inflammation. However, aged primates have a >70% reduction in adenosine triphosphate (ATP) and a decrease in cytochrome c oxidase. There is a shift in cone mitochondrial positioning and glycolytic activity increases. Bruch's membrane thickens but unlike in mice, amyloid beta is absent. Hence, reduced ATP may explain cone functional decline in ageing but their retained presence offers the possibility of functional restoration if they can be fuelled appropriately to restore cellular function. This is important because as humans we largely depend on cone function to see and are rarely fully dark adapted. Presence of limited aged inflammation and amyloid beta deposition question some of the therapeutic approaches taken to resolve problems of retinal ageing in humans and the possible lack of success in clinical trials in macular degeneration that have targeted inflammatory agents.


Assuntos
Envelhecimento/fisiologia , Retina/fisiologia , Trifosfato de Adenosina/biossíntese , Animais , Lâmina Basilar da Corioide/metabolismo , Espaço Extracelular/metabolismo , Camundongos , Mitocôndrias/metabolismo , Primatas , Retina/citologia , Retina/metabolismo , Especificidade da Espécie , Estresse Fisiológico
8.
Sci Rep ; 9(1): 1082, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705315

RESUMO

Age related macular degeneration (AMD) is the most common blinding disease in those over 60 years. In 50% of cases it is associated with polymorphisms of complement factor H (FH), implicating immune vulnerability. But such individuals may exhibit abnormal outer retinal blood flow decades before disease initiation, suggesting an early disease footprint. FH is expressed in the retinal pigmented epithelium (RPE). During development the RPE is adjacent to the site of retinal mitosis and complex regulatory interactions occur between the relatively mature RPE and retinal neuronal precursors that control the cell cycle. Here we ask if the absence of FH from the RPE influences retinal development using a mouse CFH knockout (Cfh-/-) with an aged retinal degenerative phenotype. We reveal that from birth, these mice have significantly disrupted and delayed retinal development. However, once development is complete, their retinae appear relatively normal, although many photoreceptor and RPE mitochondria are abnormally large, suggesting dysfunction consistent with premature ATP decline in Cfh-/-. Total retinal mtDNA is also reduced and these deficits are associated shortly after with reduced retinal function. Cfh-/+ mice also show significant abnormal patterns of cell production but not as great as in Cfh-/-. These results reveal that not only is FH an important player in sculpting retinal development but also that the developmental abnormality in Cfh-/- likely establishes critical vulnerability for later aged retinal degeneration.


Assuntos
Fator H do Complemento/metabolismo , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Fator H do Complemento/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Degeneração Macular/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitose/genética , Mitose/fisiologia , Retina/metabolismo , Retina/patologia , Epitélio Pigmentado da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...