Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2024: 8864513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304347

RESUMO

Aim: The present study evaluated the therapeutic effects of luteolin in alleviating pulpitis of dental pulp- (DP-) derived microvesicles (MVs) via the inhibition of protein kinase R- (PKR-) mediated inflammation. Methodology. Proteomic analysis of immortalized human dental pulp (DP-1) cell-derived MVs was performed to identify PKR-associated molecules. The effect of luteolin on PKR phosphorylation in DP-1 cells and the expression of tumor necrosis factor-α (TNF-α) in THP-1 macrophage-like cells were validated. The effect of luteolin on cell proliferation was compared with that of chemical PKR inhibitors (C16 and 2-AP) and the unique commercially available sedative guaiacol-parachlorophenol. In the dog experimental pulpitis model, the pulps were treated with (1) saline, (2) guaiacol-parachlorophenol, and (3) luteolin. Sixteen teeth from four dogs were extracted, and the pulp tissues were analyzed using hematoxylin and eosin staining. Immunohistochemical staining was performed to analyze the expression of phosphorylated PKR (pPKR), myeloperoxidase (MPO), and CD68. Experimental endodontic-periodontal complex lesions were established in mouse molar through a silk ligature and simultaneous MV injection. MVs were prepared from DP-1 cells with or without pretreatment with 2-AP or luteolin. A three-dimensional microcomputed tomography analysis was performed on day 7 (n = 6). Periodontal bone resorption volumes were calculated for each group (nonligated-ligated), and the ratio of bone volume to tissue volume was measured. Results: Proteomic analysis identified an endogenous PKR activator, and a protein activator of interferon-induced PKR, also known as PACT, was included in MVs. Luteolin inhibited the expressions of pPKR in DP-1 cells and TNF-α in THP-1 cells with the lowest suppression of cell proliferation. In the dog model of experimental pulpitis, luteolin treatment suppressed the expression of pPKR-, MPO-, and CD68-positive cells in pulp tissues, whereas guaiacol-parachlorophenol treatment caused coagulative necrosis and disruption. In a mouse model of endodontic-periodontal complex lesions, luteolin treatment significantly decreased MV-induced alveolar bone resorption. Conclusion: Luteolin is an effective and safe compound that inhibits PKR activation in DP-derived MVs, enabling pulp preservation.


Assuntos
Perda do Osso Alveolar , Clorofenóis , Pulpite , Cães , Humanos , Camundongos , Animais , Luteolina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Microtomografia por Raio-X , Proteômica , Inflamação/metabolismo , Guaiacol , Polpa Dentária/metabolismo
2.
Jpn Dent Sci Rev ; 60: 15-21, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38098853

RESUMO

The prevalence and severity of periodontitis are increased and advanced in diabetes. Severe periodontitis elicits adverse effects on diabetes by impairing insulin actions due to systemic microinflammation. Recent studies unveil the emerging findings and molecular basis of the bidirectional relationship between periodontitis and diabetes. In addition to conventional mechanisms such as hyperglycemia, hyperlipidemia, and chronic inflammation, deficient insulin action may play a pathogenic role in the progression of periodontitis under diabetes. Epidemiologically, from the viewpoint of the adverse effect of periodontitis on diabetes, recent studies have suggested that Asians including Japanese and Asian Americans with diabetes and mild obesity (BMI <25 kg/m2) should pay more attention to their increased risk for cardiovascular diseases. In this review, we summarize recent findings on the effect of diabetes on periodontitis from the viewpoint of abnormalities in metabolism and insulin resistance with novel mechanisms, and the influence of periodontitis on diabetes mainly focused on micro-inflammation related to mature adipose tissue and discuss future perspectives about novel approaches to interrupt the adverse interrelationship.

3.
Front Physiol ; 14: 1298813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156070

RESUMO

Drug-induced gingival overgrowth (DIGO), induced by certain immunosuppressive drugs, antihypertensive agents, and antiepileptic drugs, may contribute to the formation of deeper periodontal pockets and intractableness in periodontitis. To date, multiple factors such as enhanced matrix production, inflammation, and reduced matrix degradation might be involved in the pathogenesis of DIGO. We have previously reported that SPOCK-1, a heparan sulfate proteoglycan, could affect gingival thickening by promoting epithelial-to-mesenchymal transition (EMT) in gingival keratinocytes. However, few studies have investigated whether a combination of these factors enhances the DIGO phenotype in animal models. Therefore, we investigated whether SPOCK-1, periodontal inflammation, and cyclosporin-A (CsA) could cooperatively promote gingival overgrowth. We first confirmed that Spock-1 overexpressing (Spock1-Tg) mice showed significantly thicker gingiva and greater alveolar bone loss than WT mice in response to ligature-induced experimental periodontitis. DIGO was induced by the combination of CsA administration and experimental periodontitis was significantly enhanced in Spock1-Tg mice compared to that in WT mice. Ligature-induced alveolar bone loss in CsA-treated Spock1-Tg mice was also significantly greater than that in CsA-treated WT mice, while being accompanied by an increase in Rankl and Col1a1 levels and a reduction in matrix metalloprotease expression. Lastly, SPOCK-1 promoted RANKL-induced osteoclast differentiation in both human peripheral blood mononuclear cells and murine macrophages, while peritoneal macrophages from Spock1-Tg mice showed less TNFα and IL-1ß secretion than WT mice in response to Escherichia coli lipopolysaccharide. These results suggest that EMT, periodontal inflammation, and subsequent enhanced collagen production and reduced proteinase production contribute to CsA-induced DIGO pathogenesis.

4.
Diabetes ; 72(7): 986-998, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058471

RESUMO

Insulin resistance and hyperglycemia are risk factors for periodontitis and poor wound healing in diabetes, which have been associated with selective loss of insulin activation of the PI3K/Akt pathway in the gingiva. This study showed that insulin resistance in the mouse gingiva due to selective deletion of smooth muscle and fibroblast insulin receptor (SMIRKO mice) or systemic metabolic changes induced by a high-fat diet (HFD) in HFD-fed mice exacerbated periodontitis-induced alveolar bone loss, preceded by delayed neutrophil and monocyte recruitment and impaired bacterial clearance compared with their respective controls. The immunocytokines, CXCL1, CXCL2, MCP-1, TNFα, IL-1ß, and IL-17A, exhibited delayed maximal expression in the gingiva of male SMIRKO and HFD-fed mice compared with controls. Targeted overexpression of CXCL1 in the gingiva by adenovirus normalized neutrophil and monocyte recruitment and prevented bone loss in both mouse models of insulin resistance. Mechanistically, insulin enhanced bacterial lipopolysaccharide-induced CXCL1 production in mouse and human gingival fibroblasts (GFs), via Akt pathway and NF-κB activation, which were reduced in GFs from SMIRKO and HFD-fed mice. These results provided the first report that insulin signaling can enhance endotoxin-induced CXCL1 expression to modulate neutrophil recruitment, suggesting CXCL1 as a new therapeutic direction for periodontitis or wound healing in diabetes. ARTICLE HIGHLIGHTS: The mechanism for the increased risks for periodontitis in the gingival tissues due to insulin resistance and diabetes is unclear. We investigated how insulin action in gingival fibroblasts modulates the progression of periodontitis in resistance and diabetes. Insulin upregulated the lipopolysaccharide-induced neutrophil chemoattractant, CXCL1, production in gingival fibroblasts via insulin receptors and Akt activation. Enhancing CXCL1 expression in the gingiva normalized diabetes and insulin resistance-induced delays in neutrophils recruitment and periodontitis. Targeting dysregulation of CXCL1 in fibroblasts is potentially therapeutic for periodontitis and may also improve wound healing in insulin resistance and diabetes.


Assuntos
Diabetes Mellitus , Resistência à Insulina , Insulinas , Periodontite , Animais , Humanos , Masculino , Camundongos , Quimiocina CXCL1 , Resistência à Insulina/genética , Insulinas/uso terapêutico , Lipopolissacarídeos , Infiltração de Neutrófilos , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt
5.
Arch Biochem Biophys ; 734: 109501, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36592647

RESUMO

A well-tuned inflammatory response is crucial for an effective immune process. Nuclear factor-kappa B (NF-κB) is a key mediator of inflammatory and innate immunity responses, and its dysregulation is closely associated with immune-related diseases. MicroRNAs (miRNAs) are important inflammation modulators. However, miRNA-regulated mechanisms that implicate NF-κB activity are not fully understood. This study aimed to identify a potential miRNA that could modulate the dysregulated NF-κB signaling during inflammation. We identified miR-582-5p that was significantly downregulated in inflamed murine adipose tissues and RAW264.7 cells. S-phase kinase-associated protein 1 (SKP1), a core component of an E3 ubiquitin ligase that regulates the NF-κB pathway, was proposed as a biological target of miR-582-5p by using TargetScan. The binding of miR-582-5p to a 3'-untranslated region site on Skp1 was confirmed using a dual-luciferase reporter assay; in addition, transfection with a miR-582-5p mimic suppressed SKP1 expression in RAW264.7 cells. Importantly, exogenous miR-582-5p attenuated the production of pro-inflammatory cytokines such as tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 through suppressing the degradation of the NF-κB inhibitor alpha, followed by the nuclear translocation of NF-κB. Therefore, exogenously applied miR-582-5p can attenuate the NF-κB signaling pathway via targeting Skp1; this provides a prospective therapeutic strategy for treating inflammatory and immune diseases.


Assuntos
MicroRNAs , NF-kappa B , Animais , Camundongos , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais
6.
Front Cell Dev Biol ; 10: 1061216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531939

RESUMO

The expression profiles of exosomal microRNAs (miRNAs) are regulated by the microenvironment, and appropriate priming with mesenchymal stem cells (MSCs) is one of the strategies to enhance the paracrine potency of MSCs. Our previous work demonstrated that exosomes from tumor necrosis factor (TNF)-α-primed human gingiva-derived MSCs (GMSCs) could be a therapeutic tool against periodontitis, and that TNFα-inducible exosomal miR-1260b is essential for the inhibition of alveolar bone loss. However, the precise molecular mechanism underlying miR-1260b-mediated inhibition of osteoclastogenesis is not yet fully understood. Here, we found that the activating transcription factor (ATF)-6ß, a novel miR-1260b-targeting gene, is critical for the regulation of osteoclastogenesis under endoplasmic reticulum (ER) stress. An experimental periodontal mouse model demonstrated that induction of ER stress was accompanied by enhanced ATF6ß expression, and local administration of miR-1260b and ATF6ß siRNA using polyethylenimine nanoparticles (PEI-NPs) significantly suppressed the periodontal bone resorption. In periodontal ligament (PDL) cells, the ER stress inducer, tunicamycin, enhanced the expression of the receptor activator of NF-κB ligand (RANKL), while miR-1260b-mediated downregulation of ATF6ß caused RANKL inhibition. Furthermore, the secretome from miR-1260b/ATF6ß-axis-activated PDL cells inhibited osteoclastogenesis in human CD14+ peripheral blood-derived monocytes. These results indicate that the miR-1260b/ATF6ß axis mediates the regulation of ER stress, which may be used as a novel therapeutic strategy to treat periodontal disease.

7.
Sci Rep ; 12(1): 13344, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922474

RESUMO

Immunoregulatory properties of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are promising. Gingival tissue-derived MSCs (GMSCs) have unique immunoregulatory capacity and secrete large amounts of EVs. Recent findings suggest that priming MSCs with inflammatory stimuli is an effective strategy for cell-free therapy. However, the precise mechanism by which the contents of EVs are customized has not been fully elucidated. Here, we show that EVs derived from GMSCs primed with a combination of two pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interferon-α (IFN-α), synergistically promote anti-inflammatory M2 macrophage polarization by increasing the expression of cluster of differentiation 73 (CD73) and CD5 molecule-like (CD5L). Expression of CD73 by TNF-α/IFN-α stimulation was transcriptionally upregulated by the activation of mammalian target of rapamycin signaling and nuclear translocation of hypoxia-inducible factor 1α in GMSCs. TNF-α/IFN-α treatment also significantly increased the expression of CD5L mRNA via the transcription factor DNA-binding protein inhibitor ID3 and liver X receptor. Interestingly, exosomal CD5L is a prerequisite for the synergistic effect of EVs-mediated M2 macrophage polarization. These results indicate that combined pre-licensing with TNF-α and IFN-α in GMSCs is ideal for enhancing the anti-inflammatory function of EVs, which contributes to the establishment of a therapeutic tool.


Assuntos
Vesículas Extracelulares , Fator de Necrose Tumoral alfa , Vesículas Extracelulares/metabolismo , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Ativação de Macrófagos , Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Acta Diabetol ; 59(10): 1275-1286, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35829914

RESUMO

AIMS: Pancreatic ß-cell apoptosis may be involved in the onset and progression of type 2 diabetes mellitus, although its mechanism remains unclear. We previously demonstrated that macrophage-derived interferon (IFN) ß induced X-linked inhibitor of apoptosis-associated factor 1 (XAF1) expression in ß-cells and accelerated ß-cell apoptosis in vitro. Here, we explored the effects of XAF1 on ß-cell function and progression of diabetes in vivo. METHODS: Pancreatic ß-cell-selective XAF1 overexpressing (Xaf1 Tg) mice were generated. Xaf1 Tg mice and their wild-type (WT) littermates were fed either a normal diet or a 40% or 60% high-fat diet (HFD). The effects of ß-cell XAF1 on ß-cell apoptosis and exacerbation of diabetes were investigated. RESULTS: Palmitic acid induced IFNß expression in macrophages, and HFD intake promoted macrophage infiltration in pancreatic islets, both of which cooperatively upregulated XAF1 expression in mouse islets. Furthermore, HFD-fed Xaf1 Tg mice demonstrated increased ß-cell apoptosis, lowered insulin expression, and impaired glucose tolerance compared with WT mice fed the same diet. These effects were more pronounced in the 60%HFD group than in the 40%HFD group. CONCLUSIONS: Pancreatic ß-cell XAF1 expression was enhanced via HFD-induced, macrophage-derived IFNß, which promoted ß-cell apoptosis and led to a reduction in insulin secretion and progression of diabetes. To our knowledge, this is the first report to demonstrate an association between pancreatic ß-cell XAF1 overexpression and exacerbation of diabetes, thus providing insight into the mechanism of ß-cell mass reduction in diabetes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
9.
Circ Res ; 131(2): 168-183, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35642564

RESUMO

BACKGROUND: Insulin resistance (IR) can increase atherosclerotic and cardiovascular risk by inducing endothelial dysfunction, decreasing nitric oxide (NO) production, and accelerating arterial inflammation. The aim is to determine the mechanism by which insulin action and NO production in endothelial cells can improve systemic bioenergetics and decrease atherosclerosis via differentiation of perivascular progenitor cells (PPCs) into brown adipocytes (BAT). METHODS: Studies used various endothelial transgenic and deletion mutant ApoE-/- mice of insulin receptors, eNOS (endothelial NO synthase) and ETBR (endothelin receptor type B) receptors for assessments of atherosclerosis. Cells were isolated from perivascular fat and micro-vessels for studies on differentiation and signaling mechanisms in responses to NO, insulin, and lipokines from BAT. RESULTS: Enhancing insulin's actions on endothelial cells and NO production in ECIRS1 transgenic mice reduced body weight and increased systemic energy expenditure and BAT mass and activity by inducing differentiation of PPCs into beige/BAT even with high-fat diet. However, positive changes in bioenergetics, BAT differentiation from PPCs and weight loss were inhibited by N(gamma)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of eNOS, in ECIRS1 mice and eNOSKO mice. The mechanism mediating NO's action on PPC differentiation into BAT was identified as the activation of solubilized guanylate cyclase/PKGIα (cGMP protein-dependent kinase Iα)/GSK3ß (glycogen synthase kinase 3ß) pathways. Plasma lipidomics from ECIRS1 mice with NO-induced increased BAT mass revealed elevated 12,13-diHOME production. Infusion of 12,13-diHOME improved endothelial dysfunction and decreased atherosclerosis, whereas its reduction had opposite effects in ApoE-/-mice. CONCLUSIONS: Activation of eNOS and endothelial cells by insulin enhanced the differentiation of PPC to BAT and its lipokines and improved systemic bioenergetics and atherosclerosis, suggesting that endothelial dysfunction is a major contributor of energy disequilibrium in obesity.


Assuntos
Tecido Adiposo Marrom , Aterosclerose , Tecido Adiposo Marrom/metabolismo , Animais , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Células Endoteliais/metabolismo , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo
10.
JCI Insight ; 7(5)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35133981

RESUMO

Diabetic nephropathy (DN) arises from systemic and local changes in glucose metabolism and hemodynamics. We have reported that many glycolytic and mitochondrial enzymes, such as pyruvate kinase M2 (PKM2), were elevated in renal glomeruli of DN-protected patients with type 1 and type 2 diabetes. Here, mice with PKM2 overexpression specifically in podocytes (PPKM2Tg) were generated to uncover the renal protective function of PPKM2Tg as a potential therapeutic target that prevented elevated albumin/creatinine ratio (ACR), mesangial expansion, basement membrane thickness, and podocyte foot process effacement after 7 months of streptozotocin-induced (STZ-induced) diabetes. Furthermore, diabetes-induced impairments of glycolytic rate and mitochondrial function were normalized in diabetic PPKM2Tg glomeruli, in concordance with elevated Ppargc1a and Vegf expressions. Restored VEGF expression improved glomerular maximal mitochondrial function in diabetic PPKM2Tg and WT mice. Elevated VEGF levels were observed in the glomeruli of DN-protected patients with chronic type 1 diabetes and clinically correlated with estimated glomerular filtration (GFR) - but not glycemic control. Mechanistically, the preservations of mitochondrial function and VEGF expression were dependent on tetrameric structure and enzymatic activities of PKM2 in podocytes. These findings demonstrate that PKM2 structure and enzymatic activation in podocytes can preserve the entire glomerular mitochondrial function against toxicity of hyperglycemia via paracrine factors such as VEGF and prevent DN progression.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Podócitos , Piruvato Quinase , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , Humanos , Camundongos , Podócitos/metabolismo , Piruvato Quinase/metabolismo , Regeneração , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-34031140

RESUMO

INTRODUCTION: Enlarged adipose tissue is characterized by infiltration of activated immune cells and increased expression of chemokines recruiting these cells including C-C motif ligand 19 (CCL19), although the role of adipose CCL19 is still inconclusive. RESEARCH DESIGN AND METHODS: Adipocyte-specific Ccl19 knock-in (KI) mice were generated, and the mice were fed either a normal diet or 40% or 60% fat diet (FD) to investigate the effects of CCL19 on the induction of inflammation and lipid metabolism. RESULTS: Ccl19KI mice exhibited increased inflammatory signs in adipose tissue and enlarged subcutaneous white and brown adipose tissue than those of wild-type (WT) mice. The adipose tissue of Ccl19KI mice was characterized by increased extracellular signal-regulated kinase 1/2 and decreased AMP-activated protein kinase α phosphorylation. The protein expression of peroxisome proliferator-activated receptor γ coactivator 1α and uncoupling protein 1 was significantly reduced in brown adipose tissue of Ccl19KI mice compared with that in WT mice. The most remarkable changes between genotypes were observed in mice fed a 40% FD. CONCLUSION: A 40% FD enhanced the effects of CCL19 overexpression, and these mice could be a suitable model to study metabolic disorders in overweight Asians.


Assuntos
Resistência à Insulina , Tecido Adiposo Branco , Animais , Resistência à Insulina/genética , Ligantes , Camundongos , Obesidade , Aumento de Peso
12.
Acta Biomater ; 122: 306-324, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33359765

RESUMO

Mesenchymal stem cell (MSC)-derived exosome plays a central role in the cell-free therapeutics involving MSCs and the contents can be customized under disease-associated microenvironments. However, optimal MSC-preconditioning to enhance its therapeutic potential is largely unknown. Here, we show that preconditioning of gingival tissue-derived MSCs (GMSCs) with tumor necrosis factor-alpha (TNF-α) is ideal for the treatment of periodontitis. TNF-α stimulation not only increased the amount of exosome secreted from GMSCs, but also enhanced the exosomal expression of CD73, thereby inducing anti-inflammatory M2 macrophage polarization. The effect of GMSC-derived exosomes on inflammatory bone loss were examined by ligature-induced periodontitis model in mice. Local injection of GMSC-derived exosomes significantly reduced periodontal bone resorption and the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and these effects were further enhanced by preconditioning of GMSCs with TNF-α. Thus, GMSC-derived exosomes also exhibited anti-osteoclastogenic activity. Receptor activator of NF-κB ligand (RANKL) expression was regulated by Wnt5a in periodontal ligament cells (PDLCs), and exosomal miR-1260b was found to target Wnt5a-mediated RANKL pathway and inhibit its osteoclastogenic activity. These results indicate that significant ability of the TNF-α-preconditioned GMSC-derived exosomes to regulate inflammation and osteoclastogenesis paves the way for establishment of a therapeutic approach for periodontitis.


Assuntos
Perda do Osso Alveolar , Exossomos , Animais , Gengiva , Humanos , Macrófagos , Camundongos , Osteoclastos , Fator de Necrose Tumoral alfa
13.
Biochem Biophys Res Commun ; 533(4): 1076-1082, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33012508

RESUMO

SPOCK1 is a calcium-binding matricellular proteoglycan that has been extensively studied in several cancer cells. Previously, we generated a mouse line overexpressing SPOCK1 (Spock1-Tg mouse) and showed that SPOCK1 might play an important role in drug-induced gingival overgrowth, indicating that it possesses physiological functions in non-cancer diseases as well. Although SPOCK1 was reported to be secreted from human adipocytes, its role in adipocyte physiology has not been addressed yet. In this study, SPOCK1 protein expression was confirmed in pancreas, adipose tissues, spleen, and liver of normal diet (ND)-fed mice. Interestingly, SPOCK1 was up-regulated in the pancreas and adipose tissues of the high-fat diet (HFD)-fed mice. Spock1-Tg mice fed with ND showed increased maturation in epididymal and inguinal adipose tissues. In addition, Spock1 overexpression strongly decreased expression of UCP-1 in adipose tissues, suggesting that SPOCK1 might regulate thermogenic function through suppression of UCP-1 expression. Finally, exogenous SPOCK1 treatment directly accelerated the differentiation of 3T3-L1 adipocytes, accompanied by the up-regulation of adipocyte differentiation-related gene expression. In conclusion, we demonstrated for the first time that SPOCK1 induced adipocyte differentiation via the up-regulation of adipogenesis-related genes.


Assuntos
Adipócitos/metabolismo , Adipogenia/genética , Tecido Adiposo/citologia , Regulação da Expressão Gênica/genética , Proteoglicanas/metabolismo , Células 3T3-L1 , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica , Imuno-Histoquímica , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pâncreas/metabolismo , Proteoglicanas/genética , Proteínas Recombinantes , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Regulação para Cima
14.
Sci Rep ; 10(1): 9785, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555336

RESUMO

Few studies have investigated the role of extracellular-matrix proteoglycans in the pathogenesis of drug-induced gingival overgrowth (DIGO). SPOCK1 is an extracellular proteoglycan that induces epithelial to mesenchymal transition (EMT) in several cancer cell lines and exhibits protease-inhibitory activity. However, the role of SPOCK1 in non-cancerous diseases such as DIGO has not been well-addressed. We demonstrated that the expression of SPOCK1, TGF-ß1, and MMP-9 in calcium channel blocker-induced gingival overgrowth is higher than that in non-overgrowth tissues. Transgenic mice overexpressing Spock1 developed obvious gingival-overgrowth and fibrosis phenotypes, and positively correlated with EMT-like changes. Furthermore, in vitro data indicated a tri-directional interaction between SPOCK1, TGF-ß1, and MMP-9 that led to gingival overgrowth. Our study shows that SPOCK1 up-regulation in a noncancerous disease and SPOCK1-induced EMT in gingival overgrowth occurs via cooperation and crosstalk between several potential signaling pathways. Therefore, SPOCK1 is a novel therapeutic target for gingival overgrowth and its expression is a potential risk of EMT induction in cancerous lesions.


Assuntos
Transição Epitelial-Mesenquimal , Doenças da Gengiva/induzido quimicamente , Proteoglicanas/fisiologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular Tumoral , Humanos , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nifedipino/farmacologia , Proteoglicanas/genética , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
15.
Front Immunol ; 11: 709, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373130

RESUMO

Enamel matrix derivatives (EMDs)-based periodontal tissue regenerative therapy is known to promote healing with minimal inflammatory response after periodontal surgery, i. e., it promotes wound healing with reduced pain and swelling. It has also been reported that macrophages stimulated with amelogenin, a major component of EMD, produce various anti-inflammatory cytokines and growth factors. We previously found that stimulation of monocytes with murine recombinant M180 (rM180) amelogenin suppresses major histocompatibility complex class II (MHC II) gene expression using microarray analysis. However, the detailed molecular mechanisms for this process remain unclear. In the present study, we demonstrated that rM180 amelogenin selectively downmodulates the interferon gamma (IFNγ)-induced cell surface expression of MHC II molecules in macrophages and this mechanism mediated by rM180 appeared to be widely conserved across species. Furthermore, rM180 accumulated in the nucleus of macrophages at 15 min after stimulation and inhibited the protein expression of class II transactivator (CIITA) which controls the transcription of MHC II by IFNγ. In addition, reduced MHC II expression on macrophages pretreated with rM180 impaired the expression of T cell activation markers CD25 and CD69, T cell proliferation ability, and IL-2 production by allogenic CD4+ T lymphocytes in mixed lymphocyte reaction assay. The chromatin immunoprecipitation assay showed that IFNγ stimulation increased the acetylation of histone H3 lysine 27, which is important for conversion to euchromatin, as well as the trimethylation of histone H3 lysine 4 levels in the CIITA promoter IV (p-IV) region, but both were suppressed in the group stimulated with IFNγ after rM180 treatment. In conclusion, the present study shows that amelogenin suppresses MHC II expression by altering chromatin structure and inhibiting CIITA p-IV transcription activity, and attenuates subsequent T cell activation. Clinically observed acceleration of wound healing after periodontal surgery by amelogenin may be partially mediated by the mechanism elucidated in this study. In addition, the use of recombinant amelogenin is safe because it is biologically derived protein. Therefore, amelogenin may also be used in future as an immunosuppressant with minimal side effects for organ transplantation or MHC II-linked autoimmune diseases such as type I diabetes, multiple sclerosis, and rheumatoid arthritis, among others.


Assuntos
Amelogenina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Eucromatina/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Interferon gama/metabolismo , Macrófagos/imunologia , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Transativadores/genética , Amelogenina/genética , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células THP-1
16.
Biochem Biophys Rep ; 22: 100757, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32346618

RESUMO

MicroRNA (miRNA) plays an important role in diverse cellular biological processes such as inflammatory response, differentiation and proliferation, and carcinogenesis. miR-146a has been suggested as a negative regulator of the inflammatory reaction. Although, it has been reported as expressed in inflamed adipose and periodontal tissues, however, miR-146a's inhibitory effects against inflammatory response in both the tissues, are not well understood. Therefore, in this study, the inhibitory effects of miR-146a on both adipose and periodontal inflammation, was investigated. In vitro study has revealed that miR-146a transfection into either adipocytes or gingival fibroblasts, has resulted in a reduced cytokine gene expression, observed on co-culturing the cells with macrophages in the presence of lipopolysaccharides (LPS), in comparison to the control miRNA transfected. Similarly, miR-146a transfection into macrophages resulted in a reduced expression of TNF-α gene and protein in response to LPS stimulation. In vivo study revealed that a continuous intravenous miR-146a administration into mice via tail vein, protected the mice from developing high-fat diet-induced obesity and the inflammatory cytokine gene expression was down-regulated in both adipose and periodontal tissues. miR-146a appeared to be induced by macrophage-derived inflammatory signals such as TNF-α by negative feed-back mechanism, and it suppressed inflammatory reaction in both adipose and periodontal tissues. Therefore, miR-146a could be suggested as a potential therapeutic molecule and as a common inflammatory regulator for both obesity-induced diabetes and related periodontal diseases.

17.
Nutr Metab (Lond) ; 16: 43, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31312229

RESUMO

BACKGROUND: The chemokine receptor CCR7, expressed on various immune cells, is associated with cell migration and lympho-node homing. Mice lacking Ccr7 are protected from diet-induced obesity and subsequent insulin resistance. We evaluated the mechanism underlying these protective effects from the standpoint of energy expenditure. METHODS: Wild-type and Ccr7 null mice were fed a high-fat diet, and the regulation of energy metabolism and energy metabolism-related molecules, e.g., Ucp1, Cidea, and Pgc1α, were evaluated. RESULTS: Food intake did not differ between groups. O2 consumption and CO2 production were higher in Ccr7 null mice than in wild-type mice, despite a similar respiratory quotient and glucose and lipid utilization, suggesting that energy expenditure increased in Ccr7 null mice via enhanced metabolism. In white adipose tissues of Ccr7 null mice, Prdm16, Cd137, Tmem26, Th, and Tbx1 expression increased. Similarly, in brown adipose tissues of Ccr7 null mice, Dio2, Pgc1α, Cidea, Sirt1, and Adiponectin expression increased. In both white and brown adipose tissues, Ucp1 gene and protein expression levels were higher in null mice than in wild-type mice. CONCLUSIONS: In Ccr7 null mice, browning of white adipocytes as well as the activation of brown adipocytes cause enhanced energy metabolism, resulting in protection against diet-induced obesity.

18.
Diabetes Care ; 42(7): 1263-1273, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31076418

RESUMO

OBJECTIVE: Elevated glycolytic enzymes in renal glomeruli correlated with preservation of renal function in the Medalist Study, individuals with ≥50 years of type 1 diabetes. Specifically, pyruvate kinase M2 (PKM2) activation protected insulin-deficient diabetic mice from hyperglycemia-induced glomerular pathology. This study aims to extend these findings in a separate cohort of individuals with type 1 and type 2 diabetes and discover new circulatory biomarkers for renal protection through proteomics and metabolomics of Medalists' plasma. We hypothesize that increased glycolytic flux and improved mitochondrial biogenesis will halt the progression of diabetic nephropathy. RESEARCH DESIGN AND METHODS: Immunoblots analyzed selected glycolytic and mitochondrial enzymes in postmortem glomeruli of non-Medalists with type 1 diabetes (n = 15), type 2 diabetes (n = 19), and no diabetes (n = 5). Plasma proteomic (SOMAscan) (n = 180) and metabolomic screens (n = 214) of Medalists with and without stage 3b chronic kidney disease (CKD) were conducted and significant markers validated by ELISA. RESULTS: Glycolytic (PKM1, PKM2, and ENO1) and mitochondrial (MTCO2) enzymes were significantly elevated in glomeruli of CKD- versus CKD+ individuals with type 2 diabetes. Medalists' plasma PKM2 correlated with estimated glomerular filtration rate (r 2 = 0.077; P = 0.0002). Several glucose and mitochondrial enzymes in circulation were upregulated with corresponding downregulation of toxic metabolites in CKD-protected Medalists. Amyloid precursor protein was also significantly upregulated, tumor necrosis factor receptors downregulated, and both confirmed by ELISA. CONCLUSIONS: Elevation of enzymes involved in the metabolism of intracellular free glucose and its metabolites in renal glomeruli is connected to preserving kidney function in both type 1 and type 2 diabetes. The renal profile of elevated glycolytic enzymes and reduced toxic glucose metabolites is reflected in the circulation, supporting their use as biomarkers for endogenous renal protective factors in people with diabetes.


Assuntos
Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/metabolismo , Enzimas/metabolismo , Glucose/metabolismo , Piruvato Quinase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Autopsia , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos de Coortes , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/patologia , Progressão da Doença , Enzimas/análise , Feminino , Taxa de Filtração Glomerular , Humanos , Rim/metabolismo , Rim/patologia , Rim/fisiopatologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Masculino , Redes e Vias Metabólicas/fisiologia , Metabolômica/métodos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Proteômica/métodos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/fisiopatologia
19.
J Periodontol ; 90(6): 565-575, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31026349

RESUMO

BACKGROUND: Periodontitis is more common and severe in people with diabetes than the general population. We have reported in the Joslin Medalist Study that people with type 1 diabetes of ≥50 years (Medalists) may have endogenous protective factors against diabetic nephropathy and retinopathy. METHODS: In this cross-sectional study, the prevalence of periodontitis according to the Centers for Disease Control/American Academy of Periodontology classification in a subset (n = 170, mean age = 64.6 ± 6.9 years) of the Medalist cohort, and its associations to various criteria of periodontitis and diabetic complications were assessed. RESULTS: The prevalence of severe periodontitis in Medalists was only 13.5% which was lower than reported levels in diabetic patients of similar ages. Periodontal parameters, including bleeding on probing, plaque index, gingival index, and demographic traits, including male sex, chronological age, and age at diagnosis were significantly associated with severity of periodontitis, which did not associate with diabetes duration, hemoglobin A1c (HbA1c), body mass index, and lipid profiles. Random serum C-peptide levels inversely associated with severity of periodontitis (P = 0.03), lower probing depth (P = 0.0002), and clinical attachment loss (P = 0.03). Prevalence of cardiovascular diseases (CVD) and systemic inflammatory markers, plasma interleukin-6 (IL-6), and serum immunoglobulin G titer against Porphyromonas gingivalis positively associated with severity of periodontitis (P = 0.002 and 0.02, respectively). Antibody titer to P. gingivalis correlated positively and significantly with CVD, serum IL-6, and high-sensitivity C-reactive protein. CONCLUSIONS: Some Medalists could be protected from severe periodontitis even with hyperglycemia. Endogenous protective factors for periodontitis could possibly be related to residual insulin production and lower levels of chronic inflammation.


Assuntos
Diabetes Mellitus Tipo 1 , Periodontite , Idoso , Estudos Transversais , Índice de Placa Dentária , Hemoglobinas Glicadas , Humanos , Masculino , Pessoa de Meia-Idade , Perda da Inserção Periodontal
20.
Arterioscler Thromb Vasc Biol ; 38(1): 92-101, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29162603

RESUMO

OBJECTIVE: The objective of this study is to evaluate whether exogenously induced hyperinsulinemia may increase the development of atherosclerosis. APPROACH AND RESULTS: Hyperinsulinemia, induced by exogenous insulin implantation in high-fat fed (60% fat HFD) apolipoprotein E-deficient mice (ApoE-/-) mice, exhibited insulin resistance, hyperglycemia, and hyperinsulinemia. Atherosclerosis was measured by the accumulation of fat, macrophage, and extracellular matrix in the aorta. After 8 weeks on HFD, ApoE-/- mice were subcutaneously implanted with control (sham) or insulin pellet, and phlorizin, a sodium glucose cotransporters inhibitor (1/2)inhibitor, for additional 8 weeks. Intraperitoneal glucose tolerance test showed that plasma glucose levels were lower and insulin and IGF-1 (insulin-like growth factor-1) levels were 5.3- and 3.3-fold higher, respectively, in insulin-implanted compared with sham-treated ApoE-/- mice. Plasma triglyceride, cholesterol, and lipoprotein levels were decreased in mice with insulin implant, in parallel with increased lipoprotein lipase activities. Atherosclerotic plaque by en face and complexity staining showed significant reductions of fat deposits and expressions of vascular adhesion molecule-1, tumor necrosis factor-α, interleukin 6, and macrophages in arterial wall while exhibiting increased activation of pAKT and endothelial nitric oxide synthase (P<0.05) comparing insulin-implanted versus sham HFD ApoE-/- mice. No differences were observed in atherosclerotic plaques between phlorizin-treated and sham HFD ApoE-/- mice, except phlorizin significantly lowered plasma glucose and glycated hemoglobin levels while increased glucosuria. Endothelial function was improved only by insulin treatment through endothelial nitric oxide synthase/nitric oxide activations and reduced proinflammatory (M1) and increased anti-inflammatory (M2) macrophages, which were inhibited by endothelial nitric oxide synthase inhibitor. CONCLUSIONS: Exogenous insulin decreased atherosclerosis by lowering inflammatory cytokines, macrophages, and plasma lipids in HFD-induced hyperlipidemia, insulin resistant and mildly diabetic ApoE-/- mice.


Assuntos
Aterosclerose/prevenção & controle , Citocinas/sangue , Diabetes Mellitus/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Hipoglicemiantes/administração & dosagem , Mediadores da Inflamação/sangue , Inflamação/prevenção & controle , Insulina/administração & dosagem , Lipídeos/sangue , Animais , Anti-Inflamatórios/administração & dosagem , Aterosclerose/sangue , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus/sangue , Diabetes Mellitus/patologia , Diabetes Mellitus/fisiopatologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Implantes de Medicamento , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Hipoglicemiantes/efeitos adversos , Inflamação/sangue , Inflamação/patologia , Inflamação/fisiopatologia , Resistência à Insulina , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Knockout para ApoE , Florizina/farmacologia , Placa Aterosclerótica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...