Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 126, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862995

RESUMO

BACKGROUND: In an extensive genomic analysis of lung adenocarcinomas (LUADs), driver mutations have been recognized as potential targets for molecular therapy. However, there remain cases where target genes are not identified. Super-enhancers and structural variants are frequently identified in several hundred loci per case. Despite this, most cancer research has approached the analysis of these data sets separately, without merging and comparing the data, and there are no examples of integrated analysis in LUAD. METHODS: We performed an integrated analysis of super-enhancers and structural variants in a cohort of 174 LUAD cases that lacked clinically actionable genetic alterations. To achieve this, we conducted both WGS and H3K27Ac ChIP-seq analyses using samples with driver gene mutations and those without, allowing for a comprehensive investigation of the potential roles of super-enhancer in LUAD cases. RESULTS: We demonstrate that most genes situated in these overlapped regions were associated with known and previously unknown driver genes and aberrant expression resulting from the formation of super-enhancers accompanied by genomic structural abnormalities. Hi-C and long-read sequencing data further corroborated this insight. When we employed CRISPR-Cas9 to induce structural abnormalities that mimicked cases with outlier ERBB2 gene expression, we observed an elevation in ERBB2 expression. These abnormalities are associated with a higher risk of recurrence after surgery, irrespective of the presence or absence of driver mutations. CONCLUSIONS: Our findings suggest that aberrant gene expression linked to structural polymorphisms can significantly impact personalized cancer treatment by facilitating the identification of driver mutations and prognostic factors, contributing to a more comprehensive understanding of LUAD pathogenesis.


Assuntos
Adenocarcinoma de Pulmão , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Receptor ErbB-2 , Humanos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Mutação , Biomarcadores Tumorais/genética , Feminino , Masculino , Variação Estrutural do Genoma , Genômica/métodos , Pessoa de Meia-Idade , Prognóstico , Idoso
2.
Exp Mol Med ; 56(3): 646-655, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433247

RESUMO

DNA methylation is an epigenetic modification that results in dynamic changes during ontogenesis and cell differentiation. DNA methylation patterns regulate gene expression and have been widely researched. While tools for DNA methylation analysis have been developed, most of them have focused on intergroup comparative analysis within a dataset; therefore, it is difficult to conduct cross-dataset studies, such as rare disease studies or cross-institutional studies. This study describes a novel method for DNA methylation analysis, namely, methPLIER, which enables interdataset comparative analyses. methPLIER combines Pathway Level Information Extractor (PLIER), which is a non-negative matrix factorization (NMF) method, with regularization by a knowledge matrix and transfer learning. methPLIER can be used to perform intersample and interdataset comparative analysis based on latent feature matrices, which are obtained via matrix factorization of large-scale data, and factor-loading matrices, which are obtained through matrix factorization of the data to be analyzed. We used methPLIER to analyze a lung cancer dataset and confirmed that the data decomposition reflected sample characteristics for recurrence-free survival. Moreover, methPLIER can analyze data obtained via different preprocessing methods, thereby reducing distributional bias among datasets due to preprocessing. Furthermore, methPLIER can be employed for comparative analyses of methylation data obtained from different platforms, thereby reducing bias in data distribution due to platform differences. methPLIER is expected to facilitate cross-sectional DNA methylation data analysis and enhance DNA methylation data resources.


Assuntos
Metilação de DNA , Neoplasias , Humanos , Estudos Transversais , Algoritmos , Epigênese Genética , Neoplasias/genética
3.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36960780

RESUMO

The analysis of super-enhancers (SEs) has recently attracted attention in elucidating the molecular mechanisms of cancer and other diseases. SEs are genomic structures that strongly induce gene expression and have been reported to contribute to the overexpression of oncogenes. Because the analysis of SEs and integrated analysis with other data are performed using large amounts of genome-wide data, artificial intelligence technology, with machine learning at its core, has recently begun to be utilized. In promoting precision medicine, it is important to consider information from SEs in addition to genomic data; therefore, machine learning technology is expected to be introduced appropriately in terms of building a robust analysis platform with a high generalization performance. In this review, we explain the history and principles of SE, and the results of SE analysis using state-of-the-art machine learning and integrated analysis with other data are presented to provide a comprehensive understanding of the current status of SE analysis in the field of medical biology. Additionally, we compared the accuracy between existing machine learning methods on the benchmark dataset and attempted to explore the kind of data preprocessing and integration work needed to make the existing algorithms work on the benchmark dataset. Furthermore, we discuss the issues and future directions of current SE analysis.


Assuntos
Algoritmos , Inteligência Artificial , Aprendizado de Máquina , Genômica , Elementos Facilitadores Genéticos
4.
J Pers Med ; 12(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36556220

RESUMO

Ovarian clear cell carcinoma (OCCC) has a poor prognosis, and its therapeutic strategy has not been established. PRELP is a leucine-rich repeat protein in the extracellular matrix of connective tissues. Although PRELP anchors the basement membrane to the connective tissue and is absent in most epithelial cancers, much remains unknown regarding its function as a regulator of ligand-mediated signaling pathways. Here, we obtained sets of differentially expressed genes by PRELP expression using OCCC cell lines. We found that more than 1000 genes were significantly altered by PRELP expression, particularly affecting the expression of a group of genes involved in the PI3K-AKT signaling pathway. Furthermore, we revealed the loss of active histone marks on the loci of the PRELP gene in patients with OCCC and how its forced expression inhibited cell proliferation. These findings suggest that PRELP is not only a molecule anchored in connective tissues but is also a signaling molecule acting in a tumor-suppressive manner. It can serve as the basis for early detection and novel therapeutic approaches for OCCC toward precision medicine.

5.
Clin Epigenetics ; 14(1): 147, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371227

RESUMO

BACKGROUND: Proline/arginine-rich end leucine-rich repeat protein (PRELP) is a member of the small leucine-rich proteoglycan family of extracellular matrix proteins, which is markedly suppressed in the majority of early-stage epithelial cancers and plays a role in regulating the epithelial-mesenchymal transition by altering cell-cell adhesion. Although PRELP is an important factor in the development and progression of bladder cancer, the mechanism of PRELP gene repression remains unclear. RESULTS: Here, we show that repression of PRELP mRNA expression in bladder cancer cells is alleviated by HDAC inhibitors (HDACi) through histone acetylation. Using ChIP-qPCR analysis, we found that acetylation of lysine residue 5 of histone H2B in the PRELP gene promoter region is a marker for the de-repression of PRELP expression. CONCLUSIONS: These results suggest a mechanism through which HDACi may partially regulate the function of PRELP to suppress the development and progression of bladder cancer. Some HDACi are already in clinical use, and the findings of this study provide a mechanistic basis for further investigation of HDACi-based therapeutic strategies.


Assuntos
Histonas , Neoplasias da Bexiga Urinária , Humanos , Histonas/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Lisina/metabolismo , Glicoproteínas/genética , Acetilação , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Metilação de DNA , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo
6.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35788277

RESUMO

The increase in the expectations of artificial intelligence (AI) technology has led to machine learning technology being actively used in the medical field. Non-negative matrix factorization (NMF) is a machine learning technique used for image analysis, speech recognition, and language processing; recently, it is being applied to medical research. Precision medicine, wherein important information is extracted from large-scale medical data to provide optimal medical care for every individual, is considered important in medical policies globally, and the application of machine learning techniques to this end is being handled in several ways. NMF is also introduced differently because of the characteristics of its algorithms. In this review, the importance of NMF in the field of medicine, with a focus on the field of oncology, is described by explaining the mathematical science of NMF and the characteristics of the algorithm, providing examples of how NMF can be used to establish precision medicine, and presenting the challenges of NMF. Finally, the direction regarding the effective use of NMF in the field of oncology is also discussed.


Assuntos
Inteligência Artificial , Medicina de Precisão , Algoritmos , Aprendizado de Máquina
7.
Biomedicines ; 9(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34829742

RESUMO

In recent years, the diversity of cancer cells in tumor tissues as a result of intratumor heterogeneity has attracted attention. In particular, the development of single-cell analysis technology has made a significant contribution to the field; technologies that are centered on single-cell RNA sequencing (scRNA-seq) have been reported to analyze cancer constituent cells, identify cell groups responsible for therapeutic resistance, and analyze gene signatures of resistant cell groups. However, although single-cell analysis is a powerful tool, various issues have been reported, including batch effects and transcriptional noise due to gene expression variation and mRNA degradation. To overcome these issues, machine learning techniques are currently being introduced for single-cell analysis, and promising results are being reported. In addition, machine learning has also been used in various ways for single-cell analysis, such as single-cell assay of transposase accessible chromatin sequencing (ATAC-seq), chromatin immunoprecipitation sequencing (ChIP-seq) analysis, and multi-omics analysis; thus, it contributes to a deeper understanding of the characteristics of human diseases, especially cancer, and supports clinical applications. In this review, we present a comprehensive introduction to the implementation of machine learning techniques in medical research for single-cell analysis, and discuss their usefulness and future potential.

8.
J Pers Med ; 11(9)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34575663

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic began at the end of December 2019, giving rise to a high rate of infections and causing COVID-19-associated deaths worldwide. It was first reported in Wuhan, China, and since then, not only global leaders, organizations, and pharmaceutical/biotech companies, but also researchers, have directed their efforts toward overcoming this threat. The use of artificial intelligence (AI) has recently surged internationally and has been applied to diverse aspects of many problems. The benefits of using AI are now widely accepted, and many studies have shown great success in medical research on tasks, such as the classification, detection, and prediction of disease, or even patient outcome. In fact, AI technology has been actively employed in various ways in COVID-19 research, and several clinical applications of AI-equipped medical devices for the diagnosis of COVID-19 have already been reported. Hence, in this review, we summarize the latest studies that focus on medical imaging analysis, drug discovery, and therapeutics such as vaccine development and public health decision-making using AI. This survey clarifies the advantages of using AI in the fight against COVID-19 and provides future directions for tackling the COVID-19 pandemic using AI techniques.

9.
Biomedicines ; 9(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34572329

RESUMO

In 2019, a novel severe acute respiratory syndrome called coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was reported and was declared a pandemic by the World Health Organization (WHO) in March 2020. With the advancing development of COVID-19 vaccines and their administration globally, it is expected that COVID-19 will converge in the future; however, the situation remains unpredictable because of a series of reports regarding SARS-CoV-2 variants. Currently, there are still few specific effective treatments for COVID-19, as many unanswered questions remain regarding the pathogenic mechanism of COVID-19. Continued elucidation of COVID-19 pathogenic mechanisms is a matter of global importance. In this regard, recent reports have suggested that epigenetics plays an important role; for instance, the expression of angiotensin I converting enzyme 2 (ACE2) receptor, an important factor in human infection with SARS-CoV-2, is epigenetically regulated; further, DNA methylation status is reported to be unique to patients with COVID-19. In this review, we focus on epigenetic mechanisms to provide a new molecular framework for elucidating the pathogenesis of SARS-CoV-2 infection in humans and of COVID-19, along with the possibility of new diagnostic and therapeutic strategies.

10.
Front Oncol ; 11: 666937, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055633

RESUMO

With the completion of the International Human Genome Project, we have entered what is known as the post-genome era, and efforts to apply genomic information to medicine have become more active. In particular, with the announcement of the Precision Medicine Initiative by U.S. President Barack Obama in his State of the Union address at the beginning of 2015, "precision medicine," which aims to divide patients and potential patients into subgroups with respect to disease susceptibility, has become the focus of worldwide attention. The field of oncology is also actively adopting the precision oncology approach, which is based on molecular profiling, such as genomic information, to select the appropriate treatment. However, the current precision oncology is dominated by a method called targeted-gene panel (TGP), which uses next-generation sequencing (NGS) to analyze a limited number of specific cancer-related genes and suggest optimal treatments, but this method causes the problem that the number of patients who benefit from it is limited. In order to steadily develop precision oncology, it is necessary to integrate and analyze more detailed omics data, such as whole genome data and epigenome data. On the other hand, with the advancement of analysis technologies such as NGS, the amount of data obtained by omics analysis has become enormous, and artificial intelligence (AI) technologies, mainly machine learning (ML) technologies, are being actively used to make more efficient and accurate predictions. In this review, we will focus on whole genome sequencing (WGS) analysis and epigenome analysis, introduce the latest results of omics analysis using ML technologies for the development of precision oncology, and discuss the future prospects.

11.
Cancers (Basel) ; 12(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256107

RESUMO

In recent years, advances in artificial intelligence (AI) technology have led to the rapid clinical implementation of devices with AI technology in the medical field. More than 60 AI-equipped medical devices have already been approved by the Food and Drug Administration (FDA) in the United States, and the active introduction of AI technology is considered to be an inevitable trend in the future of medicine. In the field of oncology, clinical applications of medical devices using AI technology are already underway, mainly in radiology, and AI technology is expected to be positioned as an important core technology. In particular, "precision medicine," a medical treatment that selects the most appropriate treatment for each patient based on a vast amount of medical data such as genome information, has become a worldwide trend; AI technology is expected to be utilized in the process of extracting truly useful information from a large amount of medical data and applying it to diagnosis and treatment. In this review, we would like to introduce the history of AI technology and the current state of medical AI, especially in the oncology field, as well as discuss the possibilities and challenges of AI technology in the medical field.

12.
Biomolecules ; 10(10)2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086649

RESUMO

Mortality attributed to lung cancer accounts for a large fraction of cancer deaths worldwide. With increasing mortality figures, the accurate prediction of prognosis has become essential. In recent years, multi-omics analysis has emerged as a useful survival prediction tool. However, the methodology relevant to multi-omics analysis has not yet been fully established and further improvements are required for clinical applications. In this study, we developed a novel method to accurately predict the survival of patients with lung cancer using multi-omics data. With unsupervised learning techniques, survival-associated subtypes in non-small cell lung cancer were first detected using the multi-omics datasets from six categories in The Cancer Genome Atlas (TCGA). The new subtypes, referred to as integration survival subtypes, clearly divided patients into longer and shorter-surviving groups (log-rank test: p = 0.003) and we confirmed that this is independent of histopathological classification (Chi-square test of independence: p = 0.94). Next, an attempt was made to detect the integration survival subtypes using only one categorical dataset. Our machine learning model that was only trained on the reverse phase protein array (RPPA) could accurately predict the integration survival subtypes (AUC = 0.99). The predicted subtypes could also distinguish between high and low risk patients (log-rank test: p = 0.012). Overall, this study explores novel potentials of multi-omics analysis to accurately predict the prognosis of patients with lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Aprendizado Profundo , Aprendizado de Máquina , Prognóstico , Carcinoma Pulmonar de Células não Pequenas/patologia , Metilação de DNA/genética , Intervalo Livre de Doença , Feminino , Genômica/estatística & dados numéricos , Humanos , Masculino , Modelos Teóricos , Análise Serial de Proteínas/métodos , Proteômica/estatística & dados numéricos
13.
Sci Rep ; 10(1): 37, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913321

RESUMO

The exposure of germ cells to radiation introduces mutations in the genomes of offspring, and a previous whole-genome sequencing study indicated that the irradiation of mouse sperm induces insertions/deletions (indels) and multisite mutations (clustered single nucleotide variants and indels). However, the current knowledge on the mutation spectra is limited, and the effects of radiation exposure on germ cells at stages other than the sperm stage remain unknown. Here, we performed whole-genome sequencing experiments to investigate the exposure of spermatogonia and mature oocytes. We compared de novo mutations in a total of 24 F1 mice conceived before and after the irradiation of their parents. The results indicated that radiation exposure, 4 Gy of gamma rays, induced 9.6 indels and 2.5 multisite mutations in spermatogonia and 4.7 indels and 3.1 multisite mutations in mature oocytes in the autosomal regions of each F1 individual. Notably, we found two types of deletions, namely, small deletions (mainly 1~12 nucleotides) in non-repeat sequences, many of which showed microhomology at the breakpoint junction, and single-nucleotide deletions in mononucleotide repeat sequences. The results suggest that these deletions and multisite mutations could be a typical signature of mutations induced by parental irradiation in mammals.


Assuntos
Genoma , Mutação , Oócitos/fisiologia , Espermatogônias/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Raios gama , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Taxa de Mutação , Oócitos/efeitos da radiação , Efeitos da Radiação , Radiação Ionizante , Espermatogônias/efeitos da radiação , Sequenciamento Completo do Genoma
14.
Genes Cells ; 25(2): 124-138, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31917895

RESUMO

Translesion synthesis (TLS) polymerases mediate DNA damage bypass during replication. The TLS polymerase Rev1 has two important functions in the TLS pathway, including dCMP transferase activity and acting as a scaffolding protein for other TLS polymerases at the C-terminus. Because of the former activity, Rev1 bypasses apurinic/apyrimidinic sites by incorporating dCMP, whereas the latter activity mediates assembly of multipolymerase complexes at the DNA lesions. We generated rev1 mutants lacking each of these two activities in Oryzias latipes (medaka) fish and analyzed cytotoxicity and mutagenicity in response to the alkylating agent diethylnitrosamine (DENA). Mutant lacking the C-terminus was highly sensitive to DENA cytotoxicity, whereas mutant with reduced dCMP transferase activity was slightly sensitive to DENA cytotoxicity, but exhibited a higher tumorigenic rate than wild-type fish. There was no significant difference in the frequency of DENA-induced mutations between mutant with reduced dCMP transferase activity and wild-type cultured cell. However, loss of heterozygosity (LOH) occurred frequently in cells with reduced dCMP transferase activity. LOH is a common genetic event in many cancer types and plays an important role on carcinogenesis. To our knowledge, this is the first report to identify the involvement of the catalytic activity of Rev1 in suppression of LOH.


Assuntos
Perda de Heterozigosidade , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Oryzias/genética , Animais , Animais Geneticamente Modificados , Carcinogênese , Linhagem Celular , Dano ao DNA , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA , Feminino , Regulação da Expressão Gênica , Fígado/patologia , Masculino , Mutagênese , Mutação , Proteínas Recombinantes , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...