Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36016037

RESUMO

Understanding the surface chemistry of target gases on sensing materials is essential for designing high-performance gas sensors. Here, we report the effect of Pt-loading on the sensing of volatile organic compounds (VOCs) with ZnO gas sensors, demonstrated by diffuse reflection infrared Fourier transform (DRIFT) spectroscopy. Pt-loaded ZnO nanocrystals (NCs) of 13~22 nm are synthesized using the hot soap method. The synthesized powder is deposited on an alumina substrate by screen-printing to form a particulate gas sensing film. The 0.1 wt% Pt-loaded ZnO NC sensor shows the highest sensor response to acetone and ethanol at 350 °C, while the responses to CO and H2 are small and exhibit good selectivity to VOCs. The gas sensing mechanism of ethanol with Pt-ZnO NCs was studied by in situ DRIFT spectroscopy combined with online FT-IR gas analysis. The results show that ethanol reacts with small Pt-loaded ZnO to produce intermediate species such as acetaldehyde, acetate, and carbonate, which generates a high sensor response to ethanol in air.

2.
Sensors (Basel) ; 22(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35590882

RESUMO

Detection, monitoring, and analysis of ethanol are important in various fields such as health care, food industries, and safety control. In this study, we report that a solid electrolyte gas sensor based on a proton-conducting membrane is promising for detecting ethanol in air. We focused on graphene oxide (GO) as a new solid electrolyte because it shows a high proton conductivity at room temperature. GO nanosheets are synthesized by oxidation and exfoliation of expanded graphite via the Tour's method. GO membranes are fabricated by stacking GO nanosheets by vacuum filtration. To detect ethanol, Au-loaded WO3 is used as the sensing electrode due to the excellent activity of gold nanoparticles for the catalysis of organic molecules. Au-WO3 is coupled with rGO (reduced graphene oxide) to facilitate the electron transport in the electrode. Ce ions are intercalated into the GO membrane to facilitate proton transport. The sensor based on the Ce doped-GO membrane combined with Au-WO3/rGO as a sensing electrode shows good electric potential difference (ΔV) responses to ethanol in the air at room temperature. The sensor signal reaches more than 600 mV in response to ethanol at 40 ppm in air, making it possible to detect ethanol at a few ppb (parts per billion) level. The ethanol sensing mechanism was discussed in terms of the mixed-potential theory and catalysis of ethanol on Au-WO3.


Assuntos
Grafite , Nanopartículas Metálicas , Técnicas Eletroquímicas/métodos , Etanol , Ouro/química , Grafite/química , Nanopartículas Metálicas/química , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...