Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Res ; : 1-10, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733204

RESUMO

While cysteine (CysSH) is known to be exported into the extracellular space, its biological significance is not well understood. The present study examined the movement of extracellular CysSH using stable isotope-labeled cystine (CysSSCys), which is transported into cells and reduced to CysSH. Exposure of HepG2 cells to 100 µM stable isotope-labeled CysSSCys resulted in 70 µM labeled CysSH in cell medium 1 h after CysSSCys exposure. When the cell medium was collected and incubated with either hydrogen peroxide (H2O2) or atmospheric electrophiles, such as 1,2-naphthoquinone, 1,4-naphthoquinone and 1,4-benzoquinone, CysSH in the cell medium was almost completely consumed. In contrast, extracellular levels of CysSH were unaltered during exposure of HepG2 cells to H2O2 for up to 2 h, suggesting redox cycling of CysSSCys/CysSH in the cell system. Experiments with and without changing cell medium containing CysSH from HepG2 cells revealed that oxidative and electrophilic modifications of cellular proteins, caused by exposure to H2O2 and 1,2-naphthoquinone, were significantly repressed by CysSH in the medium. We also examined participation of enzymes and/or antioxidants in intracellular reduction of CysSSCys to CysSH. These results provide new findings that extracellular CysSH derived from CysSSCys plays a role in the regulation of oxidative and electrophilic stress.

2.
Cureus ; 15(11): e49138, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38130532

RESUMO

A 76-year-old woman with type 2 diabetes mellitus was admitted to our hospital with a complaint of involuntary movements of the limbs and face. Brain MRI demonstrated a bilateral high signal of putamen on the T1 weighted image, and she was diagnosed with diabetic chorea. She took a second dose of the COVID-19 vaccine 28 days before admission and lost her appetite. Consequently, her HbA1c level on admission decreased from 13.5% to 10.0% in 28 days. This case suggests that diabetic chorea could be induced by the rapid amelioration of a hyperglycemic state due to appetite loss after COVID-19 mRNA vaccination.

4.
Chem Res Toxicol ; 36(1): 23-31, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36525601

RESUMO

Electrophilic quinones are produced during the combustion of gasoline in the atmosphere. Although these reactive species covalently bind to protein-based nucleophiles in cells, resulting in the formation of protein adducts involved in the modulation of redox signaling pathways and cytotoxicity, the extracellular regulation of quinones is not understood. In this study, incubation of 1,2-naphthoquinone (1,2-NQ) with the low-molecular-weight fraction of mouse plasma resulted in the consumption of cysteine (CysSH) in the plasma in a concentration-dependent manner. Covalent modification of albumin was markedly repressed by the addition of either the low-molecular-weight fraction of mouse plasma or CysSH, suggesting that CysSH protects by forming a conjugate with 1,2-NQ. Similar phenomena also occurred for other atmospheric quinones 1,4-NQ and 1,4-benzoquinone (1,4-BQ). The addition of cystine to a culture medium without amino acids enhanced the release of CysSH from A431 cells and blocked 1,2-NQ-mediated arylation of intracellular proteins, suggesting that 1,2-NQ interacts with extracellular CysSH. Liquid chromatography-tandem mass spectrometry analysis revealed that 1,2-NQ and 1,4-BQ undergoes nucleophilic attack by CysSH, yielding a 1,2-NQH2-SCys adduct and 1,4-BQH2-SCys adduct, respectively. Unlike 1,2-NQ and 1,4-BQ, the authentic 1,2-NQH2-SCys adduct and 1,4-BQH2-SCys adduct had little effect on the covalent modification of cellular proteins and viability of A431 cells. These results suggest that electrophilic quinones are readily trapped by CysSH released from A431 cells, forming less-toxic CysSH adducts and thereby repressing covalent modification of cellular proteins. These findings provide evidence for the existence of a "phase zero" reaction of electrophiles prior to their uptake by cells.


Assuntos
Naftoquinonas , Quinonas , Camundongos , Animais , Espaço Extracelular/metabolismo , Naftoquinonas/química , Proteínas , Transdução de Sinais
5.
Redox Biol ; 57: 102514, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36279630

RESUMO

Reactive sulfur species (RSS) play a role in redox homeostasis; however, adaptive cell responses to excessive intracellular RSS are not well understood. Therefore, in this study, we generated transgenic (Tg) mice overexpressing cystathionine gamma-lyase (CSE) to produce excessive RSS. Contrary to expectations, tissue concentrations of RSS, such as cysteine persulfide (CysSSH), were comparable in both wild-type and CSE Tg mice, but the plasma concentrations of CysSSH were significantly higher in CSE Tg mice than in wild-type mice. This export of surplus intracellular RSS was also observed in primary hepatocytes of CSE Tg mice. Exposure of primary hepatocytes to the RSS generator sodium tetrasulfide (Na2S4) resulted in an initial increase in the intracellular concentration of RSS, which later returned to basal levels after export into the extracellular space. Interestingly, among all amino acids, cystine (CysSSCys) was found to be essential for CysSSH export from primary mouse hepatocytes, HepG2 cells, and HEK293 cells during Na2S4 exposure, suggesting that the cystine/glutamate transporter (SLC7A11) contributes, at least partially, to CysSSH export. We established HepG2 cell lines with knockout and overexpression of SLC7A11 and used them to confirm SLC7A11 as the predominant antiporter of CysSSCys and CysSSH. We observed that the poor efflux of excess CysSSH from the cell enhanced cellular stresses induced by Na2S4 exposure, such as polysulfidation of intracellular proteins, mitochondrial damage, and cytotoxicity. These results suggest the presence of a cellular response to excess intracellular RSS that involves the extracellular efflux of excess CysSSH by a cystine-dependent transporter to maintain intracellular redox homeostasis.

6.
Chemosphere ; 299: 134374, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35318019

RESUMO

Methylmercury (MeHg) is a prevalent toxic metal that readily modifies protein thiols. Reactive persulfides that play a role in redox homeostasis are able to inactivate this metal through sulfur adduct formation. Although humans are exposed to other metals that could consume reactive persulfides on a daily basis, the health effects of combined exposure to MeHg and other metals remain unexplored. This study aimed to examine potential MeHg toxicity during exposure to MeHg with other metals capable of consuming reactive persulfides. We designed a simple system to assess the risk of combined exposure to metals based on reactivity to reactive persulfides and mercury accumulation. Among the metals examined in a cell-free system, copper, cadmium, nickel, and MeHg consumed Na2S2, used as a model of reactive persulfides, whereas zinc, iron, lithium, strontium, tin, and aluminum did not. In HepG2 cells, binary exposure to MeHg and copper, but not aluminum, increased the consumption of extracellular reactive persulfides. Binary exposure exacerbated MeHg-induced cytotoxicity by promoting the modification of intracellular proteins by MeHg. In a mouse model, binary exposure to MeHg and copper resulted in elevated mercury accumulation in the fetuses and placenta of pregnant mice, as well as the brain and liver of non-pregnant mice. Our study suggests that MeHg sensitivity can be increased by combined exposure with other electrophilic metals. In particular, binary exposure to MeHg and copper during pregnancy exacerbated mercury accumulation in offspring.


Assuntos
Expossoma , Mercúrio , Compostos de Metilmercúrio , Animais , Antioxidantes/farmacologia , Cobre , Feminino , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Camundongos , Gravidez
7.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328622

RESUMO

GCN1 is an evolutionarily-conserved ribosome-binding protein that mediates the amino acid starvation response as well as the ribotoxic stress response. We previously demonstrated that Gcn1 mutant mice lacking the GCN2-binding domain suffer from growth retardation and postnatal lethality via GCN2-independent mechanisms, while Gcn1-null mice die early in embryonic development. In this study, we explored the role of GCN1 in adult mice by generating tamoxifen-inducible conditional knockout (CKO) mice. Unexpectedly, the Gcn1 CKO mice showed body weight loss during tamoxifen treatment, which gradually recovered following its cessation. They also showed decreases in liver weight, hepatic glycogen and lipid contents, blood glucose and non-esterified fatty acids, and visceral white adipose tissue weight with no changes in food intake and viability. A decrease of serum VLDL suggested that hepatic lipid supply to the peripheral tissues was primarily impaired. Liver proteomic analysis revealed the downregulation of mitochondrial ß-oxidation that accompanied increases of peroxisomal ß-oxidation and aerobic glucose catabolism that maintain ATP levels. These findings show the involvement of GCN1 in hepatic lipid metabolism during tamoxifen treatment in adult mice.


Assuntos
Proteínas de Saccharomyces cerevisiae , Animais , Lipídeos , Fígado/metabolismo , Glicogênio Hepático/metabolismo , Camundongos , Camundongos Knockout , Fatores de Alongamento de Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases , Proteômica , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tamoxifeno/efeitos adversos , Tamoxifeno/metabolismo , Transativadores/metabolismo , Redução de Peso
8.
Chemosphere ; 295: 133833, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35120952

RESUMO

Reactive sulfur species (RSS), such as hydrogen per (poly)sulfide, cysteine per (poly)sulfide, glutathione per (poly)sulfide, and protein-bound per (poly)sulfides, can easily react with environmental electrophiles such as methylmercury (MeHg), because of their high nucleophilicity. These RSS are produced by enzymes such as cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CSE) and are found in mammalian organs. Organs of wildlife have not been analyzed for hydrogen sulfide, cysteine, glutathione, and RSS. In this study, low molecular weight nucleophilic sulfur substances, including RSS, were quantified by stable isotope dilution assay-based liquid chromatography-mass spectrometry using ß-(4-hydroxyphenyl)ethyl iodoacetamide to capture the target chemicals in the small Indian mongoose which species possesses high mercury content as same as some marine mammals. Western blotting revealed that the mongoose organs (liver, kidney, cerebrum, and cerebellum) contained proteins that cross-reacted with anti-CBS and CSE antibodies. The expression patterns of these enzymes were similar to those in mice, indicating that mongoose organs contain CBS and CSE. Moreover, bis-methylmercury sulfide (MeHg)2S, which is a low toxic compound in comparison to MeHg, was found in the liver of this species. These results suggest that the small Indian mongoose produces RSS and monothiols associated with detoxification of electrophilic organomercury. The animals which have high mercury content in their bodies may have function of mercury detoxification involved not only Se but also RSS interactions.


Assuntos
Herpestidae , Sulfeto de Hidrogênio , Animais , Cistationina gama-Liase/metabolismo , Herpestidae/metabolismo , Japão , Camundongos , Enxofre
9.
J Toxicol Sci ; 47(1): 31-37, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34987139

RESUMO

Brain susceptibility to methylmercury (MeHg) is developmentally and regionally specific in both humans and rodents, but the mechanism is not well clarified. Reactive sulfur species (RSS) with high nucleophilicity can react with MeHg, leading to the formation of a less toxic metabolite bismethylmercury sulfide, thus exerting cytoprotection. In this study, we assessed the variation of RSS content in the rat brain and evaluated its relevance in sensitivity to MeHg. Analyses of fetal/juvenile rat brains showed low RSS levels in early developmental stages. Site-specific analysis of adult rat brains revealed that cerebellar RSS levels were lower than those of the hippocampus. Microscopically, RSS levels of the granular cell layer were lower than those of the molecular layer in the cerebellum. Thus, low RSS levels corresponded with age and site of the brain that is vulnerable to MeHg. Taken together with the finding that brain RSS were consumed during MeHg exposure, these results indicate that RSS is a factor that defines the specificity of MeHg vulnerability in the brain.


Assuntos
Compostos de Metilmercúrio , Animais , Encéfalo , Cerebelo , Compostos de Metilmercúrio/toxicidade , Ratos , Sulfetos , Enxofre
10.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769192

RESUMO

Transforming growth factor-ß1 (TGF-ß1) occurs at high levels at damage sites of vascular endothelial cell layers and regulates the functions of vascular endothelial cells. Reactive sulfur species (RSS), such as cysteine persulfide, glutathione persulfide, and hydrogen persulfide, are cytoprotective factors against electrophiles such as reactive oxygen species and heavy metals. Previously, we reported that sodium trisulfide, a sulfane sulfur donor, promotes vascular endothelial cell proliferation. The objective of the present study was to clarify the regulation and significance of RSS synthesis in vascular endothelial cells after exposure to TGF-ß1. Bovine aortic endothelial cells in a culture system were treated with TGF-ß1 to assess the expression of intracellular RSS, the effect of RSS on cell proliferation in the presence of TGF-ß1, induction of RSS-producing enzymes by TGF-ß1, and intracellular signal pathways that mediate this induction. The results suggest that TGF-ß1 increased intracellular RSS levels to modulate its inhibitory effect on proliferation. The increased production of RSS, probably high-molecular-mass RSS, was due to the induction of cystathionine γ-lyase and cystathionine ß-synthase, which are RSS-producing enzymes, and the induction was mediated by the ALK5-Smad2/3/4 and ALK5-Smad2/3-ATF4 pathways in vascular endothelial cells. TGF-ß1 regulates vascular endothelial cell functions such as proliferation and fibrinolytic activity; intracellular high-molecular-mass RSS, which are increased by TGF-ß1, may modulate the regulation activity in vascular endothelial cells.


Assuntos
Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Células Endoteliais/metabolismo , Enxofre/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Bovinos , Linhagem Celular , Cistationina beta-Sintase/genética , Cistationina gama-Liase/genética , Células Endoteliais/citologia , Expressão Gênica , Humanos , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Regulação para Cima
11.
Cancer Sci ; 112(10): 4187-4197, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34327762

RESUMO

Breast cancer is the most common cancer among women. Glycoprotein non-metastatic melanoma protein B (GPNMB), a type I transmembrane protein that is highly expressed in many cancers, including breast cancer, has been shown to be a prognostic factor. We previously reported that GPNMB overexpression confers tumorigenic potential, as evidenced by invasive tumor growth in vivo, sphere formation, and cellular migration and invasion to non-tumorigenic mammary epithelial cells. In this study, we focused on the serine (S) residue in the intracellular domain of GPNMB (S530 in human isoform b and S546 in mouse), which is predicted to be a phosphorylation site. To investigate the roles of this serine residue, we made an antibody specific for S530-phosphorylated human GPNMB and a point mutant in which S530 is replaced by an alanine (A) residue, GPNMB(SA). Established GPNMB(SA) overexpressing cells showed a significant reduction in sphere formation in vitro and tumor growth in vivo as a result of decreased stemness-related gene expression compared to that in GPNMB(WT)-expressing cells. In addition, GPNMB(SA) impaired GPNMB-mediated cellular migration. Furthermore, we found that tyrosine kinase receptor signaling triggered by epidermal growth factor or fibroblast growth factor 2 induces the serine phosphorylation of GPNMB through activation of downstream oncoproteins RAS and RAF.


Assuntos
Glicoproteínas de Membrana/fisiologia , Serina/metabolismo , Animais , Especificidade de Anticorpos , Linhagem Celular Tumoral , Movimento Celular/genética , Fator de Crescimento Epidérmico/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Células MCF-7 , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Mutação Puntual , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Quinases raf/metabolismo , Proteínas ras/metabolismo
13.
Toxicol Lett ; 330: 128-133, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413476

RESUMO

Reactive sulfur species (RSS), such as hydropersulfides and hydropolysulfides with high nucleophilicity, contain mobilized sulfur that readily captures xenobiotic electrophiles, leading to their sulfur adducts. We have previously reported that RSS produced by cystathionine γ-lyase (CSE) captures the electrophilic metal methylmercury (MeHg) to form inert sulfur adducts, which in turn play a critical role in the protection against MeHg-induced motor impairment in mice. However, the mechanism underlying this neuroprotective effect is not fully understood. Here, we addressed this using CSE-knockout mice. The cerebellum of CSE-knockout mice was more susceptible to MeHg than that of wild type mice. Moreover, these CSE-deficient mice exhibited a higher level of mercury accumulation in the brain. However, co-treatment with sodium tetrasulfide, an RSS able to capture MeHg, leading to the formation of its sulfur adducts, blocked the increased accumulation of mercury, motor dysfunction and mortality caused by CSE deficiency. Our findings suggest that capturing MeHg by RSS in association with its sulfur adduct formation is involved in the repression of the brain distribution and deleterious effects of MeHg.

14.
J Toxicol Sci ; 45(1): 37-43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31932556

RESUMO

Cataract induced by exposure to naphthalene is thought to mainly involve its metabolic activation, forming 1,2-naphthoquinone (1,2-NQ), which can modify proteins through chemical modifications. In the present study, we examined the effect of 1,2-NQ on aggregation of crystallins (cry) associated with cataract. Incubation of bovine ß-cry with 1,2-NQ caused covalent modification of ß-cry at Cys117 and Lys125 accompanied by reduction in its thiol content, resulting in a concentration- and temperature-dependent aggregation of ß-cry, whereas only little aggregation of α-cry induced by 1,2-NQ was seen. Interestingly, addition of α-cry to the reaction mixture of ß-cry and 1,2-NQ markedly blocked ß-cry aggregation induced by 1,2-NQ in a concentration-dependent manner. These results suggest that ß-cry predominantly undergoes chemical modification by 1,2-NQ, causing its aggregation, which is suppressed by the chaperone-like protein, α-cry. This ß-cry aggregation may be, at least in part, involved in the induction of cataract caused by 1,2-NQ.


Assuntos
Chaperonas Moleculares , Naftoquinonas/metabolismo , Agregação Patológica de Proteínas , alfa-Cristalinas/farmacologia , beta-Cristalinas/metabolismo , Catarata/etiologia , Humanos , Ligação Proteica
15.
Hinyokika Kiyo ; 66(12): 439-442, 2020 Dec.
Artigo em Japonês | MEDLINE | ID: mdl-33435654

RESUMO

A 66-year-old woman who had been receiving medication for hypertension and hyperlipidemia was referred to our hospital for evaluation of a left adrenal tumor (12×8 mm) that was incidentally detected on computed tomography. Her 24-hour urinary catecholamine level was elevated, and metaiodobenzylguanidine (MIBG) scintigraphy revealed increased uptake in the area around the left adrenal gland, necessitating laparoscopic adrenalectomy for preoperative diagnosis of left adrenal pheochromocytoma. Intraoperatively, we detected a para-aortic tumor behind the adrenal gland, and this lesion was excised together with the adrenal gland. However, manipulation of the para-aortic tumor led to elevation in the blood pressure to 170 mmHg. Histopathological examination of the resected specimens revealed an adrenocortical adenoma and a para-aortic ganglioneuroma, consisting of ganglion cells, nerve fibers, and Schwann cells. The patient's blood pressure normalized immediately postoperatively, and MIBG scintigraphy revealed a negative result. Endocrine active ganglioneuromas are rare, and to our knowledge, currently only 8 cases (including ours) have been reported in the Japanese and English literature.


Assuntos
Neoplasias das Glândulas Suprarrenais , Ganglioneuroma , Feocromocitoma , Neoplasias das Glândulas Suprarrenais/diagnóstico por imagem , Neoplasias das Glândulas Suprarrenais/cirurgia , Glândulas Suprarrenais , Adrenalectomia , Idoso , Feminino , Ganglioneuroma/diagnóstico por imagem , Ganglioneuroma/cirurgia , Humanos , Feocromocitoma/diagnóstico por imagem , Feocromocitoma/cirurgia
16.
Environ Health Perspect ; 127(6): 67002, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31166132

RESUMO

BACKGROUND: Transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2) plays a key role in detoxification of electrophiles via formation of glutathione (GSH) adducts and subsequent excretion into extracellular spaces. We found that reactive sulfur species (RSS), such as cysteine persulfides produced by cystathionine [Formula: see text] (CSE), capture environmental electrophiles through formation of sulfur adducts. However, contributions of Nrf2 and CSE to the blockage of environmental electrophile-mediated toxicity remain to be evaluated. OBJECTIVES: The aim of this study was to clarify roles that CSE and Nrf2 play in the protection against various environmental electrophiles. We also wished to clarify the molecular basis of the developmental window of toxicity through investigating expression levels of Nrf2, RSS-producing enzymes, and sulfur nucleophiles during developmental stages of mice. METHODS: Wild-type (WT), CSE knockout (KO), Nrf2 KO, Nrf2/CSE double KO (DKO) mice, and their primary hepatocytes were analyzed in this study. Cadmium (Cd), methylmercury (MeHg), 1,4-naphthoquinone, crotonaldehyde, and acrylamide were used. We conducted Western blotting, real-time polymerase chain reaction (PCR), 3-(4,5-dimethylthiazol-2-yl)-2,5-triphenyl tetrazolium bromide (MTT) assays, liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis, alanine transaminase (ALT) activity, histopathological analysis, and rotarod test. RESULTS: Primary hepatocytes from DKO mice were significantly more sensitive to the environmental electrophiles than each single KO counterpart. Both Nrf2 and CSE single KO mice were highly susceptible to Cd and MeHg, and such sensitivity was further exacerbated in the DKO mice. Lower-level expressions of CSE and sulfur nucleophiles than those in adult mice were observed in a window of developmental stage. CONCLUSIONS: Our mouse model provided new insights into the response to environmental electrophiles; while Nrf2 is recognized as a key transcription factor for detoxification of environmental electrophiles, CSE is crucial factor to repress their toxicity in a parallel mode. In addition, the sensitivity of fetuses to MeHg appears to be, at least in part, associated with the restricted production of RSS due to low-level expression of CSE. https://doi.org/10.1289/EHP4949.


Assuntos
Cistationina gama-Liase/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Acrilamida/toxicidade , Aldeídos/toxicidade , Animais , Cádmio/toxicidade , Cistationina gama-Liase/genética , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Compostos de Metilmercúrio/toxicidade , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Naftoquinonas/toxicidade , Sulfetos/química
17.
Sci Signal ; 12(587)2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31239323

RESUMO

Chronic exposure to methylmercury (MeHg), an environmental electrophilic pollutant, reportedly increases the risk of human cardiac events. We report that exposure to a low, non-neurotoxic dose of MeHg precipitated heart failure induced by pressure overload in mice. Exposure to MeHg at 10 ppm did not induce weight loss typical of higher doses but caused mitochondrial hyperfission in myocardium through the activation of Drp1 by its guanine nucleotide exchange factor filamin-A. Treatment of neonatal rat cardiomyocytes with cilnidipine, an inhibitor of the interaction between Drp1 and filamin-A, suppressed mitochondrial hyperfission caused by low-dose MeHg exposure. Modification of cysteine residues in proteins with polysulfides is important for redox signaling and mitochondrial homeostasis in mammalian cells. We found that MeHg targeted rat Drp1 at Cys624, a redox-sensitive residue whose SH side chain forms a bulky and nucleophilic polysulfide (Cys624-S(n)H). MeHg exposure induced the depolysulfidation of Cys624-S(n)H in Drp1, which led to filamin-dependent activation of Drp1 and mitochondrial hyperfission. Treatment with NaHS, which acts as a donor for reactive polysulfides, reversed MeHg-evoked Drp1 depolysulfidation and vulnerability to mechanical load in rodent and human cardiomyocytes and mouse hearts. These results suggest that depolysulfidation of Drp1 at Cys624-S(n)H by low-dose MeHg increases cardiac fragility to mechanical load through filamin-dependent mitochondrial hyperfission.


Assuntos
Dinaminas/metabolismo , Insuficiência Cardíaca , Hemodinâmica/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Mitocôndrias Cardíacas , Animais , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos
18.
J Toxicol Sci ; 44(5): 327-333, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068538

RESUMO

Metallothionein (MT) is a low-molecular-weight, cysteine-rich, and metal-binding protein that protects cells from the cytotoxic effects of heavy metals and reactive oxygen species. Previously, we found that transcriptional induction of endothelial MT-1A was mediated by not only the metal-regulatory transcription factor 1 (MTF-1)-metal responsive element (MRE) pathway but also the nuclear factor-erythroid 2-related factor 2 (Nrf2)-antioxidant response element/electrophile responsive element (ARE) pathway, whereas that of MT-2A was mediated only by the MTF-1-MRE pathway, using the organopnictogen compounds tris(pentafluorophenyl)stibane, tris(pentafluorophenyl)arsane, and tris(pentafluorophenyl)phosphane as molecular probes in vascular endothelial cells. In the present study, we investigated the binding sites of MTF-1 and Nrf2 in the promoter regions of MTs in cultured bovine aortic endothelial cells treated with these organopnictogen compounds. We propose potential mechanisms underlying transcriptional induction of endothelial MT isoforms. Specifically, both MRE activation by MTF-1 and that of ARE in the promoter region of the MT-2A gene by Nrf2 are involved in transcriptional induction of MT-1A, whereas only MRE activation by MTF-1 or other transcriptional factor(s) is required for transcriptional induction of MT-2A in vascular endothelial cells.


Assuntos
Células Endoteliais/efeitos dos fármacos , Metalotioneína/genética , Fosfinas/toxicidade , Animais , Aorta/citologia , Bovinos , Células Cultivadas , Proteínas de Ligação a DNA/genética , Células Endoteliais/metabolismo , Fator 2 Relacionado a NF-E2/genética , Isoformas de Proteínas/genética , Fatores de Transcrição/genética , Transcrição Gênica , Fator MTF-1 de Transcrição
19.
Toxicol Sci ; 170(1): 3-9, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30985901

RESUMO

Electrophiles can undergo covalent modification of cellular proteins associated with its dysfunction, thereby exerting toxicity. Small nucleophilic molecules such as glutathione protect cells from electrophilic insult by binding covalently to electrophiles to form adducts that are excreted into the extracellular space. Recent studies indicate that sulfane sulfur, which is defined as a sulfur atom with 6 valence electrons and no charge, plays an essential role in protection against electrophile toxicity because sulfane sulfur can be highly nucleophilic compared to the corresponding thiol group. Advances in the development of assays to detect sulfane sulfur have revealed that sulfane sulfur-containing molecules such as persulfide/polysulfide species are ubiquitous in cells and tissues. Also, there is growing evidence that the binding of sulfane sulfur to electrophiles forms sulfur adducts as detoxified metabolites. Although the biosynthesis pathways of sulfane sulfur are known, its regulatory function in toxicology is still unclear. This review outlines the current knowledge of the synthesis, chemical properties, detection methods, interactions with electrophiles, and toxicological significance of sulfane sulfur, as well as suggesting directions for future research.


Assuntos
Estresse Oxidativo/efeitos dos fármacos , Compostos de Enxofre , Toxicologia/métodos , Animais , Vias Biossintéticas/efeitos dos fármacos , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Humanos , Compostos de Enxofre/análise , Compostos de Enxofre/metabolismo , Compostos de Enxofre/farmacologia
20.
Chem Res Toxicol ; 32(3): 447-455, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30681327

RESUMO

Hydropersulfides and related polysulfides have recently become topics of significant interest due to their physiological prevalence and proposed biological functions. Currently, examination of the effects of hydropersulfide treatment on cells is difficult due to their lack of inherent stability with respect to disproportionation. Herein, it is reported that the treatment of a variety of cell types with cysteine trisulfide (also known as thiocystine; Cys-SSS-Cys), results in an increase in intracellular hydropersulfide levels (e.g., cysteine hydropersulfide; Cys-SSH, and glutathione hydropersulfide; GSSH). Thus, Cys-SSS-Cys represents a possible pharmacological agent for examining the effects of hydropersulfides on cell function/viability. It has also been found that cells with increased intracellular hydropersulfide levels can export Cys-SSH into the extracellular media. Interestingly, the Cys-SSH is the major hydropersulfide exported by cells, although GSSH is the predominant intracellular species. The possible implications of cellular export are discussed.


Assuntos
Cisteína/metabolismo , Cisteína/toxicidade , Sulfetos/metabolismo , Sulfetos/toxicidade , Células 3T3 , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisteína/química , Humanos , Camundongos , Estrutura Molecular , Sulfetos/química , Sais de Tetrazólio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...