Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nutr ; 154(1): 271-283, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37949114

RESUMO

BACKGROUND: Undigested components of the human diet affect the composition and function of the microorganisms present in the gastrointestinal tract. Techniques like metagenomic analyses allow researchers to study functional capacity, thus revealing the potential of using metagenomic data for developing objective biomarkers of food intake. OBJECTIVES: As a continuation of our previous work using 16S and metabolomic datasets, we aimed to utilize a computationally intensive, multivariate, machine-learning approach to identify fecal KEGG (Kyoto encyclopedia of genes and genomes) Orthology (KO) categories as biomarkers that accurately classify food intake. METHODS: Data were aggregated from 5 controlled feeding studies that studied the individual impact of almonds, avocados, broccoli, walnuts, barley, and oats on the adult gastrointestinal microbiota. Deoxyribonucleic acid from preintervention and postintervention fecal samples underwent shotgun genomic sequencing. After preprocessing, sequences were aligned and functionally annotated with Double Index AlignMent Of Next-generation sequencing Data v2.0.11.149 and MEtaGenome ANalyzer v6.12.2, respectively. After the count normalization, the log of the fold change ratio for resulting KOs between pre- and postintervention of the treatment group against its corresponding control was utilized to conduct differential abundance analysis. Differentially abundant KOs were used to train machine-learning models examining potential biomarkers in both single-food and multi-food models. RESULTS: We identified differentially abundant KOs in the almond (n = 54), broccoli (n = 2474), and walnut (n = 732) groups (q < 0.20), which demonstrated classification accuracies of 80%, 87%, and 86% for the almond, broccoli, and walnut groups using a random forest model to classify food intake into each food group's respective treatment and control arms, respectively. The mixed-food random forest achieved 81% accuracy. CONCLUSIONS: Our findings reveal promise in utilizing fecal metagenomics to objectively complement self-reported measures of food intake. Future research on various foods and dietary patterns will expand these exploratory analyses for eventual use in feeding study compliance and clinical settings.


Assuntos
Microbioma Gastrointestinal , Juglans , Adulto , Humanos , Metagenoma , Dieta , Fezes , Biomarcadores , Ingestão de Alimentos , Metagenômica/métodos
2.
J Nutr ; 152(12): 2956-2965, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36040343

RESUMO

BACKGROUND: The fecal metabolome is affected by diet and includes metabolites generated by human and microbial metabolism. Advances in -omics technologies and analytic approaches have allowed researchers to identify metabolites and better utilize large data sets to generate usable information. One promising aspect of these advancements is the ability to determine objective biomarkers of food intake. OBJECTIVES: We aimed to utilize a multivariate, machine learning approach to identify metabolite biomarkers that accurately predict food intake. METHODS: Data were aggregated from 5 controlled feeding studies in adults that tested the impact of specific foods (almonds, avocados, broccoli, walnuts, barley, and oats) on the gastrointestinal microbiota. Fecal samples underwent GC-MS metabolomic analysis; 344 metabolites were detected in preintervention samples, whereas 307 metabolites were detected postintervention. After removing metabolites that were only detected in either pre- or postintervention and those undetectable in ≥80% of samples in all study groups, changes in 96 metabolites relative concentrations (treatment postintervention minus preintervention) were utilized in random forest models to 1) examine the relation between food consumption and fecal metabolome changes and 2) rank the fecal metabolites by their predictive power (i.e., feature importance score). RESULTS: Using the change in relative concentration of 96 fecal metabolites, 6 single-food random forest models for almond, avocado, broccoli, walnuts, whole-grain barley, and whole-grain oats revealed prediction accuracies between 47% and 89%. When comparing foods with one another, almond intake was differentiated from walnut intake with 91% classification accuracy. CONCLUSIONS: Our findings reveal promise in utilizing fecal metabolites as objective complements to certain self-reported food intake estimates. Future research on other foods at different doses and dietary patterns is needed to identify biomarkers that can be applied in feeding study compliance and clinical settings.


Assuntos
Dieta , Juglans , Humanos , Adulto , Metabolômica/métodos , Metaboloma , Grão Comestível , Biomarcadores , Ingestão de Alimentos
3.
Sci Rep ; 12(1): 1595, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102166

RESUMO

Historically, humans have interacted with soils, which contain a rich source of microorganisms. Fruit and vegetable gardening is the primary interaction humans have with soil today. Animal research reveals that soil microorganisms can be transferred to the rodent intestine. However, studies on fecal and soil microbial changes associated with gardening in humans are lacking. The current case-controlled cohort study aimed to characterize the fecal and soil microbiota of gardening families (n = 10) and non-gardening (control) families (n = 9). Families included two adults and one child (5-18 years) for a total of 56 participants. All participants provided a fecal sample, soil sample, and diet history questionnaires before the gardening season (April) and during the peak of the gardening season (August). Healthy Eating Index (HEI-2015) scores and nutrient analysis were performed. Fecal and soil DNA were extracted and amplified. Sequence data were then processed and analyzed. Peak season gardening families tended to have greater fecal operational features, a greater Faith's Phylogenetic Diversity score, greater fiber intake, and higher abundances of fiber fermenting bacteria than peak control families. Soil endemic microbes were also shared with gardening participant's fecal samples. This study revealed that the fecal microbiota of gardening families differs from non-gardening families, and that there are detectable changes in the fecal microbial community of gardeners and their family members over the course of the gardening season. Additional research is necessary to determine if changes induced by gardening on the gut microbiota contribute to human health.


Assuntos
Jardinagem
4.
J Nutr ; 151(2): 423-433, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021315

RESUMO

BACKGROUND: Diet affects the human gastrointestinal microbiota. Blood and urine samples have been used to determine nutritional biomarkers. However, there is a dearth of knowledge on the utility of fecal biomarkers, including microbes, as biomarkers of food intake. OBJECTIVES: This study aimed to identify a compact set of fecal microbial biomarkers of food intake with high predictive accuracy. METHODS: Data were aggregated from 5 controlled feeding studies in metabolically healthy adults (n = 285; 21-75 y; BMI 19-59 kg/m2; 340 data observations) that studied the impact of specific foods (almonds, avocados, broccoli, walnuts, and whole-grain barley and whole-grain oats) on the human gastrointestinal microbiota. Fecal DNA was sequenced using 16S ribosomal RNA gene sequencing. Marginal screening was performed on all species-level taxa to examine the differences between the 6 foods and their respective controls. The top 20 species were selected and pooled together to predict study food consumption using a random forest model and out-of-bag estimation. The number of taxa was further decreased based on variable importance scores to determine the most compact, yet accurate feature set. RESULTS: Using the change in relative abundance of the 22 taxa remaining after feature selection, the overall model classification accuracy of all 6 foods was 70%. Collapsing barley and oats into 1 grains category increased the model accuracy to 77% with 23 unique taxa. Overall model accuracy was 85% using 15 unique taxa when classifying almonds (76% accurate), avocados (88% accurate), walnuts (72% accurate), and whole grains (96% accurate). Additional statistical validation was conducted to confirm that the model was predictive of specific food intake and not the studies themselves. CONCLUSIONS: Food consumption by healthy adults can be predicted using fecal bacteria as biomarkers. The fecal microbiota may provide useful fidelity measures to ascertain nutrition study compliance.


Assuntos
Dieta , Ingestão de Alimentos , Fezes/microbiologia , Adulto , Idoso , Biomarcadores , Microbioma Gastrointestinal , Humanos , Pessoa de Meia-Idade , Adulto Jovem
5.
Int J Pediatr ; 2018: 6569204, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30364029

RESUMO

The aims of this study are (1) to assess changes in infant WHO growth indicators (weight-for-age, weight-for-length, and head circumference z-scores) from birth to 12 months of age as a function of feeding practices (FP) and (2) to describe the proportion of infants experiencing rapid weight gain (RWG; defined as change in weight-for-age z-score of ≥0.67 between birth and six months) among different FP. The modified Infant Feeding Practices Study II questionnaire was administered to 149 diverse caretakers/mothers of infants who were less than six months of age in a pediatric outpatient clinic. Growth as a function of FP was assessed using repeated measures ANOVA, while logistic regression was used to describe the correlates of RWG. The largest proportion of caretakers was African American (37%), 46% completed college, and 48% were enrolled in the Women, Infants, and Children (WIC) program. Regarding FP, 32% of infants were formula fed, and 18% were breastfed, with the remaining being either mixed fed or complementary fed, with nearly 40% of infants demonstrating RWG. While changes in weight-for-age z-scores differed among FP across time (p<0.05), observed patterns for head-circumference-for-age and weight-for-length z-scores did not. Various demographic correlates (caretaker race-ethnicity, education, and WIC enrollment) were associated with FP. Only the patterns of change in weight-for-age z-scores at 9 and 12 months differed among FP (with breastfeeding being the lowest at both time points). Further study is needed to adequately characterize the correlates of infant growth performance and growth patterns among different FP in such diverse samples. Continued research will allow for the development of an easy-to-use, succinct questionnaire that will allow healthcare providers to individualize feeding recommendations for caretakers of infants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...