Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 98(1): 169-174, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34293183

RESUMO

The interactions of chlorophyll (Chl) and bacteriochlorophyll (BChl) pigments with the polypeptides in photosynthetic light-harvesting proteins are responsible for controlling the absorption energy of (B)Chls in protein matrixes. The binding pocket of B800 BChl a in LH2 proteins, which are peripheral light-harvesting proteins in purple photosynthetic bacteria, is useful for studying such structure-property relationships. We report the reconstitution of Chl f, which has the formyl group at the 2-position, in the B800 cavity of LH2 from the purple bacterium Rhodoblastus acidophilus. The Qy absorption band of Chl f in the B800 cavity was shifted by 14 nm to longer wavelength compared to that of the corresponding five-coordinated monomer in acetone. This redshift was larger than that of Chl a and Chl b. Resonance Raman spectroscopy indicated hydrogen bonding between the 2-formyl group of Chl f and the LH2 polypeptide. These results suggest that this hydrogen bonding contributes to the Qy redshift of Chl f. Furthermore, the Qy redshift of Chl f in the B800 cavity was smaller than that of Chl d. This may have arisen from the different patterns of hydrogen bonding between Chl f and Chl d and/or from the steric hindrance of the 3-vinyl group in Chl f.


Assuntos
Proteínas de Bactérias , Complexos de Proteínas Captadores de Luz , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/química , Beijerinckiaceae , Clorofila/análogos & derivados , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo
2.
Nat Commun ; 11(1): 238, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932639

RESUMO

Chlorophylls (Chl) play pivotal roles in energy capture, transfer and charge separation in photosynthesis. Among Chls functioning in oxygenic photosynthesis, Chl f is the most red-shifted type first found in a cyanobacterium Halomicronema hongdechloris. The location and function of Chl f in photosystems are not clear. Here we analyzed the high-resolution structures of photosystem I (PSI) core from H. hongdechloris grown under white or far-red light by cryo-electron microscopy. The structure showed that, far-red PSI binds 83 Chl a and 7 Chl f, and Chl f are associated at the periphery of PSI but not in the electron transfer chain. The appearance of Chl f is well correlated with the expression of PSI genes induced under far-red light. These results indicate that Chl f functions to harvest the far-red light and enhance uphill energy transfer, and changes in the gene sequences are essential for the binding of Chl f.


Assuntos
Clorofila/análogos & derivados , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Sítios de Ligação , Clorofila/metabolismo , Clorofila/efeitos da radiação , Clorofila A/metabolismo , Clorofila A/efeitos da radiação , Microscopia Crioeletrônica , Cianobactérias/química , Cianobactérias/fisiologia , Transferência de Energia , Luz , Modelos Moleculares , Complexo de Proteína do Fotossistema I/efeitos da radiação , Conformação Proteica
3.
Photosynth Res ; 125(1-2): 115-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25648637

RESUMO

We prepared thylakoid membranes from Halomicronema hongdechloris cells grown under white fluorescent light or light from far-red (740 nm) light-emitting diodes, and observed their energy-transfer processes shortly after light excitation. Excitation-relaxation processes were examined by steady-state and time-resolved fluorescence spectroscopies. Two time-resolved fluorescence techniques were used: time-correlated single photon counting and fluorescence up-conversion methods. The thylakoids from the cells grown under white light contained chlorophyll (Chl) a of different energies, but were devoid of Chl f. At room temperature, the excitation energy was equilibrated among the Chl a pools with a time constant of 6.6 ps. Conversely, the thylakoids from the cells grown under far-red light possessed both Chl a and Chl f. Two energy-transfer pathways from Chl a to Chl f were identified with time constants of 1.3 and 5.0 ps, and the excitation energy was equilibrated between the Chl a and Chl f pools at room temperature. We also examined the energy-transfer pathways from phycobilisome to the two photosystems under white-light cultivation.


Assuntos
Clorofila/análogos & derivados , Cianobactérias/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo , Ficobilissomas/metabolismo , Clorofila/metabolismo , Clorofila A , Fluorescência , Luz , Espectrometria de Fluorescência , Tilacoides/metabolismo
4.
Biochim Biophys Acta ; 1837(9): 1484-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24792349

RESUMO

We examined energy transfer dynamics in the unique chlorophyll (Chl) f-containing cyanobacterium Halomicronema hongdechloris. The absorption band of Chl f appeared during cultivation of this organism under far-red light. The absorption maximum of Chl f in organic solvents occurs at a wavelength of approximately 40 nm longer than that of Chl a. In vivo, the cells display a new absorption band at approximately 730 nm at 298 K, which is at a significantly longer wavelength than that of Chl a. We primarily assigned this band to a long wavelength form of Chl a. The function of Chl f is currently unknown. We measured the fluorescence of cells using time-resolved fluorescence spectroscopy in the picosecond-to-nanosecond time range and found clear differences in fluorescence properties between the cells that contained Chl f and the cells that did not. After excitation, the fluorescence peaks of photosystem I and photosystem II appeared quickly but diminished immediately. A unique fluorescence peak located at 748 nm subsequently appeared in cells containing Chl f. This finding strongly suggests that the Chl f in this alga exists in photosystem I and II complexes and is located close to each molecule of Chl a. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.


Assuntos
Clorofila/análogos & derivados , Cianobactérias/metabolismo , Espectrometria de Fluorescência/métodos , Clorofila/química , Transferência de Energia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...