Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Invest ; 103(5): 100060, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36801643

RESUMO

Radioresistance is a major obstacle to the successful treatment of oral squamous cell carcinoma (OSCC). To help overcome this issue, we have developed clinically relevant radioresistant (CRR) cell lines generated by irradiating parental cells over time, which are useful for OSCC research. In the present study, we conducted gene expression analysis using CRR cells and their parental lines to investigate the regulation of radioresistance in OSCC cells. Based on gene expression changes over time in CRR cells and parental lines subjected to irradiation, forkhead box M1 (FOXM1) was selected for further analysis in terms of its expression in OSCC cell lines, including CRR cell lines and clinical specimens. We suppressed or upregulated the expression of FOXM1 in OSCC cell lines, including CRR cell lines, and examined radiosensitivity, DNA damage, and cell viability under various conditions. The molecular network regulating radiotolerance was also investigated, especially the redox pathway, and the radiosensitizing effect of FOXM1 inhibitors was examined as a potential therapeutic application. We found that FOXM1 was not expressed in normal human keratinocytes but was expressed in several OSCC cell lines. The expression of FOXM1 was upregulated in CRR cells compared with that detected in the parental cell lines. In a xenograft model and clinical specimens, FOXM1 expression was upregulated in cells that survived irradiation. FOXM1-specific small interfering RNA (siRNA) treatment increased radiosensitivity, whereas FOXM1 overexpression decreased radiosensitivity, and DNA damage was altered significantly under both conditions, as well as the levels of redox-related molecules and reactive oxygen species production. Treatment with the FOXM1 inhibitor thiostrepton had a radiosensitizing effect and overcame radiotolerance in CRR cells. According to these results, the FOXM1-mediated regulation of reactive oxygen species could be a novel therapeutic target for the treatment of radioresistant OSCC; thus, treatment strategies targeting this axis might overcome radioresistance in this disease.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Radiossensibilizantes , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Neoplasias Bucais/genética , Neoplasias Bucais/radioterapia , Neoplasias Bucais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Linhagem Celular Tumoral , RNA Interferente Pequeno , Proliferação de Células , Neoplasias de Cabeça e Pescoço/genética , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
2.
Mol Ther Oncolytics ; 27: 141-156, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36381653

RESUMO

We evaluated the usefulness of an oncolytic virus (Suratadenoturev; OBP-301) against radioresistant oral squamous cell carcinoma. We confirmed the expression of human telomerase reverse transcriptase and the coxsackievirus and adenovirus receptor in cell lines. Also, we examined the potential presence in a patient who has received existing therapy that is amenable to treatment with OBP-301. We evaluated: (1) the antitumor effects of OBP-301 alone and in combination with radiotherapy on radioresistant cell lines, (2) the molecular mechanism underlying the radiosensitizing effect and cell death increased by the combination therapy, and (3) the antitumor effect of the combination therapy in vivo using xenograft models (a radioresistant cell line-derived xenograft in mouse and a patient-derived xenograft). Human telomerase reverse transcriptase and the coxsackievirus and adenovirus receptor were expressed in all cell lines. OBP-301 decreased the proliferative activity of these cell lines in a concentration-dependent manner, and significantly enhanced the antitumor effect of irradiation. Phosphorylated STAT3 and its downstream molecules, which correlated with apoptosis and autophagy, showed significant changes in expression after treatment with OBP-301. The combination therapy exerted a significant antitumor effect versus radiotherapy alone in both xenograft models. Combination of OBP-301 with radiotherapy exerts a synergistic effect and may represent a promising treatment for radioresistant oral squamous cell carcinoma.

3.
Org Biomol Chem ; 14(14): 3608-13, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26978428

RESUMO

Photoactive molecules with the frameworks of chlorin and/or porphyrin possessing four perfluorinated aromatic rings were conjugated with maltotriose (Mal3) via the nucleophilic aromatic substitution reaction and subsequent deprotection reaction of the oligosaccharide moieties. The resulting oligosaccharide-conjugated molecules are ultimately improved as compared to the previously reported monosaccharide-counterparts in terms of water-solubility. In particular, a water-soluble chlorin derivative surrounded by four Mal3 molecules showed an excellent biocompatibility, strong photoabsorption in the longer wavelength regions, and a very high photocytotoxicity. Thus, the present synthetic route combined with the use of an oligosaccharide was shown to be a straightforward strategy to develop a third generation photosensitizer for photodynamic therapy (PDT).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...