Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Development ; 151(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38934417

RESUMO

Spermatogonial stem cells (SSCs) undergo self-renewal division to sustain spermatogenesis. Although it is possible to derive SSC cultures in most mouse strains, SSCs from a 129 background never proliferate under the same culture conditions, suggesting they have distinct self-renewal requirements. Here, we established long-term culture conditions for SSCs from mice of the 129 background (129 mice). An analysis of 129 testes showed significant reduction of GDNF and CXCL12, whereas FGF2, INHBA and INHBB were higher than in testes of C57BL/6 mice. An analysis of undifferentiated spermatogonia in 129 mice showed higher expression of Chrna4, which encodes an acetylcholine (Ach) receptor component. By supplementing medium with INHBA and Ach, SSC cultures were derived from 129 mice. Following lentivirus transduction for marking donor cells, transplanted cells re-initiated spermatogenesis in infertile mouse testes and produced transgenic offspring. These results suggest that the requirements of SSC self-renewal in mice are diverse, which has important implications for understanding self-renewal mechanisms in various animal species.


Assuntos
Camundongos Endogâmicos C57BL , Espermatogênese , Espermatogônias , Testículo , Animais , Masculino , Camundongos , Espermatogônias/citologia , Espermatogônias/metabolismo , Espermatogênese/genética , Espermatogênese/fisiologia , Testículo/metabolismo , Testículo/citologia , Autorrenovação Celular , Células-Tronco Germinativas Adultas/metabolismo , Células-Tronco Germinativas Adultas/citologia , Células Cultivadas , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Camundongos Endogâmicos , Diferenciação Celular , Proliferação de Células , Células-Tronco/citologia , Células-Tronco/metabolismo , Camundongos Transgênicos
2.
Viruses ; 16(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38932120

RESUMO

A gene delivery system utilizing lentiviral vectors (LVs) requires high transduction efficiency for successful application in human gene therapy. Pseudotyping allows viral tropism to be expanded, widening the usage of LVs. While vesicular stomatitis virus G (VSV-G) single-pseudotyped LVs are commonly used, dual-pseudotyping is less frequently employed because of its increased complexity. In this study, we examined the potential of phenotypically mixed heterologous dual-pseudotyped LVs with VSV-G and Sendai virus hemagglutinin-neuraminidase (SeV-HN) glycoproteins, termed V/HN-LV. Our findings demonstrated the significantly improved transduction efficiency of V/HN-LV in various cell lines of mice, cynomolgus monkeys, and humans compared with LV pseudotyped with VSV-G alone. Notably, V/HN-LV showed higher transduction efficiency in human cells, including hematopoietic stem cells. The efficient incorporation of wild-type SeV-HN into V/HN-LV depended on VSV-G. SeV-HN removed sialic acid from VSV-G, and the desialylation of VSV-G increased V/HN-LV infectivity. Furthermore, V/HN-LV acquired the ability to recognize sialic acid, particularly N-acetylneuraminic acid on the host cell, enhancing LV infectivity. Overall, VSV-G and SeV-HN synergistically improve LV transduction efficiency and broaden its tropism, indicating their potential use in gene delivery.


Assuntos
Vetores Genéticos , Proteína HN , Lentivirus , Vírus Sendai , Transdução Genética , Proteínas do Envelope Viral , Animais , Humanos , Vetores Genéticos/genética , Lentivirus/genética , Vírus Sendai/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Camundongos , Proteína HN/genética , Proteína HN/metabolismo , Linhagem Celular , Macaca fascicularis , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Tropismo Viral , Células HEK293 , Técnicas de Transferência de Genes , Terapia Genética/métodos
3.
J Reprod Dev ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38735740

RESUMO

Intracytoplasmic sperm injection (ICSI) is clinically used to treat obstructive/nonobstructive azoospermia. This study compared the efficacy of ICSI with cauda epididymal and testicular sperm in Wistar (WI) and Brown-Norway (BN) rats. The transfer of ICSI oocytes with cryopreserved epididymal and testicular WI sperm resulted in offspring production of 26.2% and 3.7%-4.7%, respectively (P < 0.05). Treatments for artificial oocyte activation (AOA) and acrosome removal improved pronuclear formation in BN-ICSI oocytes; however, only AOA treatment was effective in producing offspring (3.7%-6.5%). In the case of ICSI with testicular sperm (TESE-ICSI), one offspring (0.6%) was derived from the BN-TESE-ICSI oocytes. The application of AOA or a hypo-osmotic sperm suspension did not improve the production of TESE-ICSI offspring. Thus, outbred WI rat offspring can be produced by using ICSI and less efficiently by using TESE-ICSI. Challenges in producing offspring by using ICSI/TESE-ICSI in inbred BN strains require further investigation.

4.
Stem Cell Reports ; 19(4): 443-455, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38458191

RESUMO

Spermatogonial stem cell (SSC) transplantation is a valuable tool for studying stem cell-niche interaction. However, the conventional approach requires the removal of endogenous SSCs, causing damage to the niche. Here we introduce WIN18,446, an ALDH1A2 inhibitor, to enhance SSC colonization in nonablated recipients. Pre-transplantation treatment with WIN18,446 induced abnormal claudin protein expression, which comprises the blood-testis barrier and impedes SSC colonization. Consequently, WIN18,446 increased colonization efficiency by 4.6-fold compared with untreated host. WIN18,446-treated testes remained small despite the cessation of WIN18,446, suggesting its irreversible effect. Offspring were born by microinsemination using donor-derived sperm. While WIN18,446 was lethal to busulfan-treated mice, cyclophosphamide- or radiation-treated animals survived after WIN18,446 treatment. Although WIN18,446 is not applicable to humans due to toxicity, similar ALDH1A2 inhibitors may be useful for SSC transplantation into nonablated testes, shedding light on the role of retinoid metabolism on SSC-niche interactions and advancing SSC research in animal models and humans.


Assuntos
Sêmen , Espermatogônias , Humanos , Camundongos , Masculino , Animais , Espermatogônias/metabolismo , Testículo/metabolismo , Fertilidade , Transplante de Células-Tronco , Espermatogênese
5.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966118

RESUMO

In vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) are 2 major assisted reproductive techniques (ARTs) used widely to treat infertility. Recently, spermatogonial transplantation emerged as a new ART to restore fertility to young patients with cancer after cancer therapy. To examine the influence of germ cell manipulation on behavior of offspring, we produced F1 offspring by a combination of two ARTs, spermatogonial transplantation and ICSI. When these animals were compared with F1 offspring produced by ICSI using fresh wild-type sperm, not only spermatogonial transplantation-ICSI mice but also ICSI-only control mice exhibited behavioral abnormalities, which persisted in the F2 generation. Furthermore, although these F1 offspring appeared normal, F2 offspring produced by IVF using F1 sperm and wild-type oocytes showed various types of congenital abnormalities, including anophthalmia, hydrocephalus, and missing limbs. Therefore, ARTs can induce morphological and functional defects in mice, some of which become evident only after germline transmission.


Assuntos
Infertilidade , Neoplasias , Humanos , Masculino , Animais , Camundongos , Injeções de Esperma Intracitoplásmicas/efeitos adversos , Injeções de Esperma Intracitoplásmicas/métodos , Sêmen , Fertilização in vitro/métodos , Neoplasias/etiologia
6.
J Reprod Dev ; 69(6): 347-355, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37899250

RESUMO

Spermatogonial stem cells (SSCs) possess a unique ability to recolonize the seminiferous tubules. Upon microinjection into the adluminal compartment of the seminiferous tubules, SSCs transmigrate through the blood-testis barrier (BTB) to the basal compartment of the tubule and reinitiate spermatogenesis. It was recently discovered that inhibiting retinoic acid signaling with WIN18,446 enhances SSC colonization by transiently suppressing spermatogonia differentiation, thereby promoting fertility restoration. In this study, we report that WIN18,446 increases SSC colonization by disrupting the BTB. WIN18,446 altered the expression patterns of tight junction proteins (TJPs) and disrupted the BTB in busulfan-treated mice. WIN18,446 upregulated the expression of FGF2, one of the self-renewal factors for SSCs. While WIN18,446 enhanced SSC colonization in busulfan-treated wild-type mice, it did not increase colonization levels in busulfan-treated Cldn11-deficient mice, which lack the BTB, indicating that the enhancement of SSC colonization in wild-type testes depended on the loss of the BTB. Serial transplantation analysis revealed impaired self-renewal caused by WIN18,446, indicating that WIN18,446-mediated inhibition of retinoic acid signaling impaired SSC self-renewal. Strikingly, WIN18,446 administration resulted in the death of 45% of busulfan-treated recipient mice. These findings suggest that TJP modulation is the primary mechanism behind enhanced SSC homing by WIN18,446 and raise concerns regarding the use of WIN18,446 for human SSC transplantation.


Assuntos
Barreira Hematotesticular , Bussulfano , Masculino , Animais , Camundongos , Humanos , Barreira Hematotesticular/metabolismo , Bussulfano/farmacologia , Bussulfano/metabolismo , Espermatogônias/metabolismo , Testículo , Espermatogênese , Fertilidade , Transplante de Células , Células-Tronco , Tretinoína/farmacologia , Transplante de Células-Tronco
7.
Sci Rep ; 13(1): 12105, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495678

RESUMO

An in vitro spermatogenesis method using mouse testicular tissue to produce fertile sperm was established more than a decade ago. Although this culture method has generally not been effective in other animal species, we recently succeeded in improving the culture condition to induce spermatogenesis of rats up to the round spermatid stage. In the present study, we introduced acrosin-EGFP transgenic rats in order to clearly monitor the production of haploid cells during spermatogenesis in vitro. In addition, a metabolomic analysis of the culture media during cultivation revealed the metabolic dynamics of the testis tissue. By modifying the culture media based on these results, we were able to induce rat spermatogenesis repeatedly up to haploid cell production, including the formation of elongating spermatids, which was confirmed histologically and immunohistochemically. Finally, we performed a microinsemination experiment with in vitro produced spermatids, which resulted in the production of healthy and fertile offspring. This is the first demonstration of the in vitro production of functional haploid cells that yielded offspring in animals other than mice. These results are expected to provide a basis for the development of an in vitro spermatogenesis system applicable to many other mammals.


Assuntos
Espermátides , Testículo , Masculino , Ratos , Camundongos , Animais , Espermátides/metabolismo , Testículo/metabolismo , Sêmen , Espermatogênese/fisiologia , Ratos Transgênicos , Meios de Cultura/farmacologia , Mamíferos
8.
Stem Cell Reports ; 18(4): 985-998, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36963391

RESUMO

The testis is an immune-privileged organ. It is considered that the testis somatic microenvironment is responsible for immune suppression. However, immunological properties of spermatogonial stem cells (SSCs) have remained unknown. Here, we report the birth of allogeneic offspring by enhanced expression of immunosuppressive PD-L1 in SSCs. In vitro supplementation of GDNF and FGF2 increased expression of PD-L1 in SSCs. Cultured SSCs maintained allogeneic spermatogenesis that persisted for >1 year. However, depletion or gene editing of Pd-l1 family genes in SSCs prevented allogeneic spermatogenesis, which suggested that germ cells are responsible for suppression of the allogeneic response. PD-L1 was induced by activation of the MAPK14-BCL6B pathway, which drives self-renewal by reactive oxygen species (ROS) generation. By contrast, reduced ROS or Mapk14 deficiency downregulated PD-L1. Allogeneic offspring were born after SSC transplantation into congenitally infertile and chemically castrated mice. Thus, SSCs have unique immunological properties, which make allogeneic recipients into "surrogate fathers."


Assuntos
Transplante de Células-Tronco Hematopoéticas , Proteína Quinase 14 Ativada por Mitógeno , Masculino , Camundongos , Animais , Espermatogônias , Espécies Reativas de Oxigênio/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proliferação de Células , Testículo , Espermatogênese/genética
9.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36897562

RESUMO

Reactive oxygen species (ROS) are generated from NADPH oxidases and mitochondria; they are generally harmful for stem cells. Spermatogonial stem cells (SSCs) are unique among tissue-stem cells because they undergo ROS-dependent self-renewal via NOX1 activation. However, the mechanism by which SSCs are protected from ROS remains unknown. Here, we demonstrate a crucial role for Gln in ROS protection using cultured SSCs derived from immature testes. Measurements of amino acids required for SSC cultures revealed the indispensable role of Gln in SSC survival. Gln induced Myc expression to drive SSC self-renewal in vitro, whereas Gln deprivation triggered Trp53-dependent apoptosis and impaired SSC activity. However, apoptosis was attenuated in cultured SSCs that lacked NOX1. In contrast, cultured SSCs lacking Top1mt mitochondria-specific topoisomerase exhibited poor mitochondrial ROS production and underwent apoptosis. Gln deprivation reduced glutathione production; supra-molar Asn supplementation allowed offspring production from SSCs cultured without Gln. Therefore, Gln ensures ROS-dependent SSC-self-renewal by providing protection against NOX1 and inducing Myc.


Assuntos
Glutamina , Espermatogônias , Masculino , Camundongos , Animais , Espermatogônias/metabolismo , Glutamina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células , Células-Tronco , Células Cultivadas
10.
Biol Reprod ; 108(4): 682-693, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36648447

RESUMO

Characterization of spermatogonial stem cells (SSCs) has been hampered by their low frequency and lack of features that distinguish them from committed spermatogonia. Few conserved SSC markers have been discovered. To identify a new SSC marker, we evaluated SIRPA expression in mouse and rat SSCs. SIRPA was expressed in a small population of undifferentiated spermatogonia. SIRPA, and its ligand CD47 were expressed in cultured SSCs. Expression of both SIRPA and CD47 was upregulated by supplementation of GDNF and FGF2, which promoted SSC self-renewal. Sirpa depletion by short hairpin RNA impaired the proliferation of cultured SSCs, and these cells showed decreased MAP2K1 activation and PTPN11 phosphorylation. Immunoprecipitation experiments showed that SIRPA associates with PTPN11. Ptpn11 depletion impaired SSC activity in a manner similar to Sirpa depletion. SIRPA was expressed in undifferentiated spermatogonia in rat and monkey testes. Xenogenic transplantation experiments demonstrated that SIRPA is expressed in rat SSCs. These results suggest that SIRPA is a conserved SSC marker that promotes SSC self-renewal division by activating the MAP2K1 pathway via PTPN11.


Assuntos
Antígeno CD47 , Células-Tronco , Masculino , Camundongos , Ratos , Animais , Antígeno CD47/metabolismo , Células-Tronco/metabolismo , Proliferação de Células , Espermatogônias/metabolismo , Testículo/metabolismo , Células Cultivadas
11.
J Reprod Dev ; 68(6): 369-376, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36223953

RESUMO

Oogenesis depends on close interactions between oocytes and granulosa cells. Abnormal signaling between these cell types can result in infertility. However, attempts to manipulate oocyte-granulosa cell interactions have had limited success, likely due to the blood-follicle barrier (BFB), which prevents the penetration of exogenous materials into ovarian follicles. Here, we used adenoviruses (AVs) to manipulate the oocyte-granulosa cell interactions. AVs penetrated the BFB and transduced granulosa cells through ovarian microinjection. Although AVs caused transient inflammation, they did not impair fertility in wild-type mice. Introduction of Kitl-expressing AVs into congenitally infertile KitlSl-t/KitlSl-t mutant mouse ovaries, which contained only primordial follicles because of a lack of Kitl expression, restored fertility through natural mating. The offspring showed no evidence of AV integration and exhibited normal genomic imprinting patterns for imprinted genes. These results demonstrate the usefulness of AVs for manipulating oogenesis and suggest the possibility of gene therapies for human female infertility.


Assuntos
Infertilidade Feminina , Camundongos , Feminino , Animais , Humanos , Infertilidade Feminina/genética , Infertilidade Feminina/terapia , Infertilidade Feminina/metabolismo , Adenoviridae/genética , Folículo Ovariano/metabolismo , Células da Granulosa/metabolismo , Oócitos/metabolismo , Fertilidade/genética
12.
Stem Cell Reports ; 17(9): 1924-1941, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35931081

RESUMO

A small number of offspring are born from the numerous sperm generated from spermatogonial stem cells (SSCs). However, little is known regarding the rules and molecular mechanisms that govern germline transmission patterns. Here we report that the Trp53 tumor suppressor gene limits germline genetic diversity via Cdkn1a. Trp53-deficient SSCs outcompeted wild-type (WT) SSCs and produced significantly more progeny after co-transplantation into infertile mice. Lentivirus-mediated transgenerational lineage analysis showed that offspring bearing the same virus integration were repeatedly born in a non-random pattern from WT SSCs. However, SSCs lacking Trp53 or Cdkn1a sired transgenic offspring in random patterns with increased genetic diversity. Apoptosis of KIT+ differentiating germ cells was reduced in Trp53- or Cdkn1a-deficient mice. Reduced CDKN1A expression in Trp53-deficient spermatogonia suggested that Cdkn1a limits genetic diversity by supporting apoptosis of syncytial spermatogonial clones. Therefore, the TRP53-CDKN1A pathway regulates tumorigenesis and the germline transmission pattern.


Assuntos
Células-Tronco Germinativas Adultas , Sêmen , Animais , Apoptose/genética , Masculino , Camundongos , Espermatogênese/genética , Espermatogônias/metabolismo , Espermatozoides
13.
Cell Rep Med ; 3(5): 100606, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584625

RESUMO

Oocytes and granulosa cells closely interact with each other during follicular development, and a lack of appropriate signaling between them results in infertility. Attempts to manipulate oocyte microenvironment have been impeded by the impermeability of the blood-follicle barrier (BFB). To establish a strategy for manipulating oogenesis, we use adeno-associated viruses (AAVs), which have a unique ability of transcytosis. Microinjecting of AAVs into the ovarian stroma penetrates the BFB and achieves long-term gene expression. Introduction of an AAV carrying the mouse Kitl gene restores oogenesis in congenitally infertile KitlSl-t/KitlSl-t mutant mouse ovaries, which lack Kitl expression but contain only primordial follicles. Healthy offspring without AAV integration are born by natural mating. Therefore, AAV-mediated gene delivery not only provides a means for studying oocyte-granulosa interactions through the manipulation of the oocyte microenvironment but could also be a powerful method to treat female infertility resulting from somatic cell defects.


Assuntos
Infertilidade Feminina , Ovário , Animais , Dependovirus/genética , Feminino , Fertilidade/genética , Humanos , Infertilidade Feminina/genética , Camundongos , Folículo Ovariano
14.
Science ; 376(6589): 176-179, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35389778

RESUMO

The in vitro generation of germ cells from pluripotent stem cells (PSCs) can have a substantial effect on future reproductive medicine and animal breeding. A decade ago, in vitro gametogenesis was established in the mouse. However, induction of primordial germ cell-like cells (PGCLCs) to produce gametes has not been achieved in any other species. Here, we demonstrate the induction of functional PGCLCs from rat PSCs. We show that epiblast-like cells in floating aggregates form rat PGCLCs. The gonadal somatic cells support maturation and epigenetic reprogramming of the PGCLCs. When rat PGCLCs are transplanted into the seminiferous tubules of germline-less rats, functional spermatids-that is, those capable of siring viable offspring-are generated. Insights from our rat model will elucidate conserved and divergent mechanisms essential for the broad applicability of in vitro gametogenesis.


Assuntos
Diferenciação Celular , Gametogênese , Células-Tronco Pluripotentes , Animais , Diferenciação Celular/fisiologia , Epigenômica , Gametogênese/fisiologia , Células Germinativas , Camadas Germinativas , Masculino , Ratos
15.
Plants (Basel) ; 11(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35270167

RESUMO

There are several species of passion fruit grown in South America. However, there is a lack of information about the mineral content in their pulp. Thus, the objective of the present research was to determine the mineral content in the pulp of different germplasms of passion fruit [Passiflora edulis f. flavicarpa (INIAP 2009 and P10), P. alata (Sweet passion fruit), P. edulis f. edulis (Gulupa) and Passiflora sp. (Criollo POR1 and Criollo PICH1)] grown in Ecuador and to determine their relationship with relevant fruit quality traits. The results showed that high Mg content was associated with less peel thickness, soluble solids was negatively related to K and B content, and vitamin C was negatively related to S content. INIAP 2009 had high titratable acidity and fruit weight but low N and Na; P10 showed the highest contents of N, K, Na, Mn and fruit weight but less P, Mg, and Fe; sweet passion fruit showed high S, Zn, Cu, soluble solids, and peel thickness but low K, Ca, B, and titratable acidity; Gulupa had high Mg, B, and Zn but low S, Fe, and Mn; Criollo POR1 showed high N and Fe but low Zn; and Criollo PICH1 showed high P, Ca, Mg, and Cu but low soluble solids and peel thickness. These results provide additional information on passion fruit germplasm grown in Ecuador and constitutes a reference for further breeding programs.

16.
Stem Cell Reports ; 17(4): 924-935, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35334214

RESUMO

Gametogenesis requires close interactions between germ cells and somatic cells. Derivation of sperm from spermatogonial stem cells (SSCs) is hampered by the inefficiency of spermatogonial transplantation technique in many animal species because it requires a large number of SSCs and depletion of endogenous spermatogenesis. Here we used mouse testis primordia and organoids to induce spermatogenesis from SSCs. We microinjected mouse SSCs into embryonic gonads or reaggregated neonatal testis organoids, which were transplanted under the tunica albuginea of mature testes. As few as 1 × 104 donor cells colonized both types of transplants and produced sperm. Moreover, rat embryonic gonads supported xenogeneic spermatogenesis from mouse SSCs when transplanted in testes of immunodeficient mice. Offspring with normal genomic imprinting patterns were born after microinsemination. These results demonstrate remarkable flexibility of the germ cell-somatic cell interaction and raise new strategies of SSC manipulation for animal transgenesis and analysis of male infertility.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Testículo , Animais , Masculino , Camundongos , Organoides , Ratos , Espermatogênese/genética , Espermatogônias/transplante , Transplante de Células-Tronco
17.
Plants (Basel) ; 11(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35161309

RESUMO

Tropical fruits are in high demand for their flavor and for their functional composition because these compounds are considered nutraceuticals. Passion fruit production is of economic importance to Ecuador; however, several Passiflora species are grown and each has to be analyzed to identify their phytochemical composition. In this study, the polyphenol, flavonoid, carotenoid, vitamin C, sugar and organic acid contents were determined. Six different Passiflora spp. germplasms were analyzed, coming from Passiflora edulis f. flavicarpa, Passiflora alata, Passiflora edulis f. edulis and unidentified Passiflora species (local germplasm). Measurement techniques included reflectometry for vitamin C, spectrophotometry for antioxidant compounds and HPLC for sugars and organic acids. Data were analyzed by principal component analysis, correlation and analysis of variance. Results showed that INIAP 2009 and P10 showed a high amount of polyphenols, antioxidant activity and citric content. Sweet passion fruit had the lowest vitamin C content while Gulupa showed the highest content. In terms of the local germplasm, POR1 showed the lowest content of flavonoids while PICH1 had high flavonoid and carotenoid content. Polyphenols were the main compounds that influenced antioxidant activity. This phytochemical information adds value to passion fruit as a nutraceutical source.

18.
Sci Rep ; 11(1): 24199, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921203

RESUMO

Germline mutations underlie genetic diversity and species evolution. Previous studies have assessed the theoretical mutation rates and spectra in germ cells mostly by analyzing genetic markers and reporter genes in populations and pedigrees. This study reported the direct measurement of germline mutations by whole-genome sequencing of cultured spermatogonial stem cells in mice, namely germline stem (GS) cells, together with multipotent GS (mGS) cells that spontaneously dedifferentiated from GS cells. GS cells produce functional sperm that can generate offspring by transplantation into seminiferous tubules, whereas mGS cells contribute to germline chimeras by microinjection into blastocysts in a manner similar to embryonic stem cells. The estimated mutation rate of GS and mGS cells was approximately 0.22 × 10-9 and 1.0 × 10-9 per base per cell population doubling, respectively, indicating that GS cells have a lower mutation rate compared to mGS cells. GS and mGS cells also showed distinct mutation patterns, with C-to-T transition as the most frequent in GS cells and C-to-A transversion as the most predominant in mGS cells. By karyotype analysis, GS cells showed recurrent trisomy of chromosomes 15 and 16, whereas mGS cells frequently exhibited chromosomes 1, 6, 8, and 11 amplifications, suggesting that distinct chromosomal abnormalities confer a selective growth advantage for each cell type in vitro. These data provide the basis for studying germline mutations and a foundation for the future utilization of GS cells for reproductive technology and clinical applications.


Assuntos
Células-Tronco Embrionárias/metabolismo , Instabilidade Genômica/fisiologia , Animais , Quimera/metabolismo , Biologia Computacional , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Mutação , Espécies Reativas de Oxigênio/metabolismo , Túbulos Seminíferos/metabolismo , Espermatogônias/citologia , Espermatozoides
19.
Cell Rep ; 36(7): 109550, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34407418

RESUMO

Spermatogonial stem cells (SSCs) are maintained in a special microenvironment called a niche. However, much is unknown about components that constitute the niche. Here, we report that Cdc42 is essential for germline niche development. Sertoli cell-specific Cdc42-deficient mice showed normal premeiotic spermatogenesis. However, germ cells gradually disappeared during haploid cell formation and few germ cells remained in the mature testes. Spermatogonial transplantation experiments revealed a significant loss of SSCs in Cdc42-deficient testes. Moreover, Cdc42 deficiency in Sertoli cells downregulated GDNF, a critical factor for SSC maintenance. Cdc42-deficient Sertoli cells also exhibited lower nuclear MAPK1/3 staining. Inhibition of MAP2K1 or depletion of Pea15a scaffold protein downregulated GDNF expression. A screen of transcription factors revealed that Cdc42-deficient Sertoli cells downregulate DMRT1 and SOX9, both of which are critical for Sertoli cell development. These results indicate that Cdc42 is essential for niche function via MAPK1/3-dependent GDNF secretion.


Assuntos
Células Germinativas/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Animais , Microambiente Celular , Regulação para Baixo , Desenvolvimento Embrionário , Deleção de Genes , Regulação da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Fatores de Transcrição SOX/metabolismo , Células de Sertoli/metabolismo , Espermatogônias/transplante , Testículo/metabolismo , Fatores de Transcrição/metabolismo
20.
PLoS Genet ; 17(8): e1009688, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34351902

RESUMO

Autophagy degrades unnecessary proteins or damaged organelles to maintain cellular function. Therefore, autophagy has a preventive role against various diseases including hepatic disorders, neurodegenerative diseases, and cancer. Although autophagy in germ cells or Sertoli cells is known to be required for spermatogenesis and male fertility, it remains poorly understood how autophagy participates in spermatogenesis. We found that systemic knockout mice of Rubicon, a negative regulator of autophagy, exhibited a substantial reduction in testicular weight, spermatogenesis, and male fertility, associated with upregulation of autophagy. Rubicon-null mice also had lower levels of mRNAs of Sertoli cell-related genes in testis. Importantly, Rubicon knockout in Sertoli cells, but not in germ cells, caused a defect in spermatogenesis and germline stem cell maintenance in mice, indicating a critical role of Rubicon in Sertoli cells. In mechanistic terms, genetic loss of Rubicon promoted autophagic degradation of GATA4, a transcription factor that is essential for Sertoli cell function. Furthermore, androgen antagonists caused a significant decrease in the levels of Rubicon and GATA4 in testis, accompanied by elevated autophagy. Collectively, we propose that Rubicon promotes Sertoli cell function by preventing autophagic degradation of GATA4, and that this mechanism could be regulated by androgens.


Assuntos
Fator de Transcrição GATA4/metabolismo , Técnicas de Inativação de Genes/métodos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células de Sertoli/fisiologia , Animais , Autofagia , Linhagem Celular , Fertilidade , Humanos , Masculino , Camundongos , Proteólise , Células de Sertoli/citologia , Análise de Célula Única , Espermatogênese , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...