Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(1): 135-140, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31852819

RESUMO

Redox enzymes are capable of catalyzing a vast array of useful reactions, but they require redox partners that donate or accept electrons. Semiconductor nanocrystals provide a mechanism to convert absorbed photon energy into redox equivalents for enzyme catalysis. Here, we describe a system for photochemical carbon-carbon bond formation to make 2-oxoglutarate by coupling CO2 with a succinyl group. Photoexcited electrons from cadmium sulfide nanorods (CdS NRs) transfer to 2-oxoglutarate:ferredoxin oxidoreductase from Magnetococcus marinus MC-1 (MmOGOR), which catalyzes a carbon-carbon bond formation reaction. We thereby decouple MmOGOR from its native role in the reductive tricarboxylic acid cycle and drive it directly with light. We examine the dependence of 2-oxoglutarate formation on a variety of factors and, using ultrafast transient absorption spectroscopy, elucidate the critical role of electron transfer (ET) from CdS NRs to MmOGOR. We find that the efficiency of this ET depends strongly on whether the succinyl CoA (SCoA) cosubstrate is bound at the MmOGOR active site. We hypothesize that the conformational changes due to SCoA binding impact the CdS NR-MmOGOR interaction in a manner that decreases ET efficiency compared to the enzyme with no cosubstrate bound. Our work reveals structural considerations for the nano-bio interfaces involved in light-driven enzyme catalysis and points to the competing factors of enzyme catalysis and ET efficiency that may arise when complex enzyme reactions are driven by artificial light absorbers.


Assuntos
Compostos de Cádmio/química , Dióxido de Carbono/metabolismo , Carbono/química , Luz , Nanotubos/química , Oxirredutases/metabolismo , Fotoquímica/métodos , Sulfetos/química , Acil Coenzima A , Alphaproteobacteria/enzimologia , Catálise , Ciclo do Ácido Cítrico , Transporte de Elétrons , Elétrons , Ferredoxinas/metabolismo , Cetoácidos , Ácidos Cetoglutáricos/metabolismo , Nanopartículas/química , Oxirredução
2.
J Am Chem Soc ; 136(11): 4316-24, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24564271

RESUMO

This Article describes the electron transfer (ET) kinetics in complexes of CdS nanorods (CdS NRs) and [FeFe]-hydrogenase I from Clostridium acetobutylicum (CaI). In the presence of an electron donor, these complexes produce H2 photochemically with quantum yields of up to 20%. Kinetics of ET from CdS NRs to CaI play a critical role in the overall photochemical reactivity, as the quantum efficiency of ET defines the upper limit on the quantum yield of H2 generation. We investigated the competitiveness of ET with the electron relaxation pathways in CdS NRs by directly measuring the rate and quantum efficiency of ET from photoexcited CdS NRs to CaI using transient absorption spectroscopy. This technique is uniquely suited to decouple CdS→CaI ET from the processes occurring in the enzyme during H2 production. We found that the ET rate constant (k(ET)) and the electron relaxation rate constant in CdS NRs (k(CdS)) were comparable, with values of 10(7) s(-1), resulting in a quantum efficiency of ET of 42% for complexes with the average CaI:CdS NR molar ratio of 1:1. Given the direct competition between the two processes that occur with similar rates, we propose that gains in efficiencies of H2 production could be achieved by increasing k(ET) and/or decreasing k(CdS) through structural modifications of the nanocrystals. When catalytically inactive forms of CaI were used in CdS-CaI complexes, ET behavior was akin to that observed with active CaI, demonstrating that electron injection occurs at a distal iron-sulfur cluster and is followed by transport through a series of accessory iron-sulfur clusters to the active site of CaI. Using insights from this time-resolved spectroscopic study, we discuss the intricate kinetic pathways involved in photochemical H2 generation in CdS-CaI complexes, and we examine how the relationship between the electron injection rate and the other kinetic processes relates to the overall H2 production efficiency.


Assuntos
Compostos de Cádmio/química , Hidrogênio/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Nanotubos/química , Sulfetos/química , Compostos de Cádmio/metabolismo , Clostridium acetobutylicum/enzimologia , Transporte de Elétrons , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Cinética , Processos Fotoquímicos , Sulfetos/metabolismo
3.
Photosynth Res ; 120(1-2): 141-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23334888

RESUMO

Secondary electron transfer in photosystem II (PSII), which occurs when water oxidation is inhibited, involves redox-active carotenoids (Car), as well as chlorophylls (Chl), and cytochrome b 559 (Cyt b 559), and is believed to play a role in photoprotection. CarD2 may be the initial point of secondary electron transfer because it is the closest cofactor to both P680, the initial oxidant, and to Cyt b 559, the terminal secondary electron donor within PSII. In order to characterize the role of CarD2 and to determine the effects of perturbing CarD2 on both the electron-transfer events and on the identity of the redox-active cofactors, it is necessary to vary the properties of CarD2 selectively without affecting the ten other Car per PSII. To this end, site-directed mutations around the binding pocket of CarD2 (D2-G47W, D2-G47F, and D2-T50F) have been generated in Synechocystis sp. PCC 6803. Characterization by near-IR and EPR spectroscopy provides the first experimental evidence that CarD2 is one of the redox-active carotenoids in PSII. There is a specific perturbation of the Car(∙+) near-IR spectrum in all three mutated PSII samples, allowing the assignment of the spectral signature of Car D2 (∙+) ; Car D2 (∙+) exhibits a near-IR peak at 980 nm and is the predominant secondary donor oxidized in a charge separation at low temperature in ferricyanide-treated wild-type PSII. The yield of secondary donor radicals is substantially decreased in PSII complexes isolated from each mutant. In addition, the kinetics of radical formation are altered in the mutated PSII samples. These results are consistent with oxidation of CarD2 being the initial step in secondary electron transfer. Furthermore, normal light levels during mutant cell growth perturb the shape of the Chl(∙+) near-IR absorption peak and generate a dark-stable radical observable in the EPR spectra, indicating a higher susceptibility to photodamage further linking the secondary electron-transfer pathway to photoprotection.


Assuntos
Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Mutagênese Sítio-Dirigida , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Bactérias/genética , Clorofila/metabolismo , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/genética , Synechocystis/genética , Synechocystis/metabolismo
4.
Biochim Biophys Acta ; 1817(1): 66-75, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21864501

RESUMO

Cytochrome b559 (Cyt b559), ß-carotene (Car), and chlorophyll (Chl) cofactors participate in the secondary electron-transfer pathways in photosystem II (PSII), which are believed to protect PSII from photodamage under conditions in which the primary electron-donation pathway leading to water oxidation is inhibited. Among these cofactors, Cyt b559 is preferentially photooxidized under conditions in which the primary electron-donation pathway is blocked. When Cyt b559 is preoxidized, the photooxidation of several of the 11 Car and 35 Chl molecules present per PSII is observed. In this review, the discovery of the secondary electron donors, their structures and electron-transfer properties, and progress in the characterization of the secondary electron-transfer pathways are discussed. This article is part of a Special Issue entitled: Photosystem II.


Assuntos
Grupo dos Citocromos b/metabolismo , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo , Cristalografia por Raios X , Grupo dos Citocromos b/genética , Mutagênese Sítio-Dirigida , Oxirredução , Fotoquímica , Complexo de Proteína do Fotossistema II/genética , Plantas/metabolismo
5.
Dalton Trans ; 39(16): 3985-9, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20372724

RESUMO

Photosynthetic water oxidation occurs naturally at a tetranuclear manganese center in the photosystem II protein complex. Synthetically mimicking this tetramanganese center, known as the oxygen-evolving complex (OEC), has been an ongoing challenge of bioinorganic chemistry. Most past efforts have centered on water-oxidation catalysis using chemical oxidants. However, solar energy applications have drawn attention to electrochemical methods. In this paper, we examine the electrochemical behavior of the biomimetic water-oxidation catalyst [(H(2)O)(terpy)Mn(mu-O)(2)Mn(terpy)(H(2)O)](NO(3))(3) [terpy = 2,2':6',2''-terpyridine] (1) in water under a variety of pH and buffered conditions and in the presence of acetate that binds to 1 in place of one of the terminal water ligands. These experiments show that 1 not only exhibits proton-coupled electron-transfer reactivity analogous to the OEC, but also may be capable of electrochemical oxidation of water to oxygen.


Assuntos
Complexos de Coordenação/química , Manganês/química , Compostos Organometálicos/química , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Complexos de Coordenação/síntese química , Técnicas Eletroquímicas , Concentração de Íons de Hidrogênio , Cinética , Compostos Organometálicos/síntese química
6.
J Phys Chem B ; 113(29): 9901-8, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19552399

RESUMO

beta-Carotene radicals produced in the hexagonal pores of the molecular sieve Cu(II)-MCM-41 were studied by ENDOR and visible/near-IR spectroscopies. ENDOR studies showed that neutral radicals of beta-carotene were produced in humid air under ambient fluorescent light. The maximum absorption wavelengths of the neutral radicals were measured and were additionally predicted by using time-dependent density functional theory (TD-DFT) calculations. An absorption peak at 750 nm, assigned to the neutral radical with a proton loss from the 4(4') position of the beta-carotene radical cation in Cu(II)-MCM-41, was also observed in photosystem II (PS II) samples using near-IR spectroscopy after illumination at 20 K. This peak was previously unassigned in PS II samples. The intensity of the absorption peak at 750 nm relative to the absorption of chlorophyll radical cations and beta-carotene radical cations increased with increasing pH of the PS II sample, providing further evidence that the absorption peak is due to the deprotonation of the beta-carotene radical cation. Based on a consideration of possible proton acceptors that are adjacent to beta-carotene molecules in photosystem II, as modeled in the X-ray crystal structure of Guskov et al. Nat. Struct. Mol. Biol. 2009, 16, 334-342, an electron-transfer pathway from a beta-carotene molecule with an adjacent proton acceptor to P680*+ is proposed.


Assuntos
Complexo de Proteína do Fotossistema II/química , beta Caroteno/química , Simulação por Computador , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Concentração de Íons de Hidrogênio , Modelos Químicos , Modelos Moleculares , Teoria Quântica , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...