Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 290(22): 5313-5321, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37530740

RESUMO

Arsenic is a carcinogen that can cause skin, lung, and bladder cancer. While DNA double-strand breaks (DSBs) have been implicated in arsenic-induced carcinogenesis, the exact mechanism remains unclear. In this study, we performed genetic analysis to examine the impact of arsenic trioxide (As2 O3 ) on four different DSB repair pathways using the human pre-B cell line Nalm-6. Random integration analysis showed that As2 O3 does not negatively affect non-homologous end joining or polymerase theta-mediated end joining. In contrast, chromosomal DSB repair analysis revealed that As2 O3 decreases the efficiency of homologous recombination (HR) and, less prominently, single-strand annealing. Consistent with this finding, As2 O3 decreased gene-targeting efficiency, owing to a significant reduction in the frequency of HR-mediated targeted integration. To further verify the inhibitory effect of arsenic on HR, we examined cellular sensitivity to olaparib and camptothecin, which induce one-ended DSBs requiring HR for precise repair. Intriguingly, we found that As2 O3 significantly enhances sensitivity to those anticancer agents in HR-proficient cells. Our results suggest that arsenic-induced genomic instability is attributed to HR suppression, providing valuable insights into arsenic-associated carcinogenesis and therapeutic options.


Assuntos
Arsênio , Quebras de DNA de Cadeia Dupla , Humanos , Reparo do DNA , Recombinação Homóloga , Reparo do DNA por Junção de Extremidades , DNA , Carcinogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...