Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
2.
Life Sci Alliance ; 6(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37833072

RESUMO

The tumor microenvironment is a dynamic network of stromal, cancer, and immune cells that interact and compete for resources. We have previously identified the Vanin1 pathway as a tumor suppressor of sarcoma development via vitamin B5 and coenzyme A regeneration. Using an aggressive sarcoma cell line that lacks Vnn1 expression, we showed that the administration of pantethine, a vitamin B5 precursor, attenuates tumor growth in immunocompetent but not nude mice. Pantethine boosts antitumor immunity, including the polarization of myeloid and dendritic cells towards enhanced IFNγ-driven antigen presentation pathways and improved the development of hypermetabolic effector CD8+ T cells endowed with potential antitumor activity. At later stages of treatment, the effect of pantethine was limited by the development of immune cell exhaustion. Nevertheless, its activity was comparable with that of anti-PD1 treatment in sensitive tumors. In humans, VNN1 expression correlates with improved survival and immune cell infiltration in soft-tissue sarcomas, but not in osteosarcomas. Pantethine could be a potential therapeutic immunoadjuvant for the development of antitumor immunity.


Assuntos
Linfócitos T CD8-Positivos , Sarcoma , Humanos , Camundongos , Animais , Coenzima A/farmacologia , Ácido Pantotênico/farmacologia , Sarcoma/tratamento farmacológico , Microambiente Tumoral
3.
Front Microbiol ; 14: 1139276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051519

RESUMO

The tetrameric cytoplasmic FeFe hydrogenase Hnd from Solidesulfovibrio fructosivorans (formely Desulfovibrio fructosovorans) catalyses H2 oxidation and couples the exergonic reduction of NAD+ to the endergonic reduction of a ferredoxin by using a flavin-based electron-bifurcating mechanism. Regarding its implication in the bacterial physiology, we previously showed that Hnd, which is non-essential when bacteria grow fermentatively on pyruvate, is involved in ethanol metabolism. Under these conditions, it consumes H2 to produce reducing equivalents for ethanol production as a fermentative product. In this study, the approach implemented was to compare the two S. fructosivorans WT and the hndD deletion mutant strains when grown on ethanol as the sole carbon and energy source. Based on the determination of bacterial growth, metabolite consumption and production, gene expression followed by RT-q-PCR, and Hnd protein level followed by mass spectrometry, our results confirm the role of Hnd hydrogenase in the ethanol metabolism and furthermore uncover for the first time an essential function for a Desulfovibrio hydrogenase. Hnd is unequivocally required for S. fructosivorans growth on ethanol, and we propose that it produces H2 from NADH and reduced ferredoxin generated by an alcohol dehydrogenase and an aldehyde ferredoxin oxidoreductase catalyzing the conversion of ethanol into acetate. The produced H2 could then be recycled and used for sulfate reduction. Hnd is thus a reversible hydrogenase that operates in H2-consumption by an electron-bifurcating mechanism during pyruvate fermentation and in H2-production by an electron-confurcating mechanism when the bacterium uses ethanol as electron donor.

4.
Microbiol Res ; 268: 127279, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36592576

RESUMO

Solidesulfovibrio fructosivorans (formely Desulfovibrio fructosovorans), an anaerobic sulfate-reducing bacterium, possesses six gene clusters encoding six hydrogenases catalyzing the reversible oxidation of hydrogen gas (H2) into protons and electrons. One of these, named Hnd, was demonstrated to be an electron-bifurcating hydrogenase Hnd (Kpebe et al., 2018). It couples the exergonic reduction of NAD+ to the endergonic reduction of a ferredoxin with electrons derived from H2 and whose function has been recently shown to be involved in ethanol production under pyruvate fermentation (Payne 2022). To understand further the physiological role of Hnd in S. fructosivorans, we compared the mutant deleted of part of the hnd gene with the wild-type strain grown on pyruvate without sulfate using NMR-based metabolomics. Our results confirm that Hnd is profoundly involved in ethanol metabolism, but also indirectly intervenes in global carbon metabolism and additional metabolic processes such as the biosynthesis of branched-chain amino acids. We also highlight the metabolic reprogramming induced by the deletion of hndD that leads to the upregulation of several NADP-dependent pathways.


Assuntos
Hidrogenase , Elétrons , Fermentação , Hidrogênio/metabolismo , Hidrogenase/genética , Hidrogenase/química , Hidrogenase/metabolismo , Oxirredução , Ácido Pirúvico , Desulfovibrionaceae/química , Desulfovibrionaceae/metabolismo
5.
Gut ; 72(6): 1115-1128, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36175116

RESUMO

OBJECTIVE: In the management of patients with IBD, there is a need to identify prognostic markers and druggable biological pathways to improve mucosal repair and probe the efficacy of tumour necrosis factor alpha biologics. Vnn1 is a pantetheinase that degrades pantetheine to pantothenate (vitamin B5, a precursor of coenzyme A (CoA) biosynthesis) and cysteamine. Vnn1 is overexpressed by inflamed colonocytes. We investigated its contribution to the tolerance of the intestinal mucosa to colitis-induced injury. DESIGN: We performed an RNA sequencing study on colon biopsy samples from patients with IBD stratified according to clinical severity and modalities of treatment. We generated the VIVA mouse transgenic model, which specifically overexpresses Vnn1 on intestinal epithelial cells and explored its susceptibility to colitis. We developed a pharmacological mimicry of Vnn1 overexpression by administration of Vnn1 derivatives. RESULTS: VNN1 overexpression on colonocytes correlates with IBD severity. VIVA mice are resistant to experimentally induced colitis. The pantetheinase activity of Vnn1 is cytoprotective in colon: it enhances CoA regeneration and metabolic adaptation of colonocytes; it favours microbiota-dependent production of short chain fatty acids and mostly butyrate, shown to regulate mucosal energetics and to be reduced in patients with IBD. This prohealing phenotype is recapitulated by treating control mice with the substrate (pantethine) or the products of pantetheinase activity prior to induction of colitis. In severe IBD, the protection conferred by the high induction of VNN1 might be compromised because its enzymatic activity may be limited by lack of available substrates. In addition, we identify the elevation of indoxyl sulfate in urine as a biomarker of Vnn1 overexpression, also detected in patients with IBD. CONCLUSION: The induction of Vnn1/VNN1 during colitis in mouse and human is a compensatory mechanism to reinforce the mucosal barrier. Therefore, enhancement of vitamin B5-driven metabolism should improve mucosal healing and might increase the efficacy of anti-inflammatory therapy.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Colite/metabolismo , Colo/patologia , Mucosa Intestinal/metabolismo , Doenças Inflamatórias Intestinais/genética , Ácidos Graxos Voláteis/metabolismo , Vitaminas , Sulfato de Dextrana , Modelos Animais de Doenças
6.
Mol Microbiol ; 117(4): 907-920, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35066935

RESUMO

Desulfovibrio fructosovorans, a sulfate-reducing bacterium, possesses six gene clusters encoding six hydrogenases catalyzing the reversible oxidation of H2 into protons and electrons. Among them, Hnd is an electron-bifurcating hydrogenase, coupling the exergonic reduction of NAD+ to the endergonic reduction of a ferredoxin with electrons derived from H2 . It was previously hypothesized that its biological function involves the production of NADPH necessary for biosynthetic purposes. However, it was subsequently demonstrated that Hnd is instead a NAD+ -reducing enzyme, thus its specific function has yet to be established. To understand the physiological role of Hnd in D. fructosovorans, we compared the hnd deletion mutant with the wild-type strain grown on pyruvate. Growth, metabolite production and consumption, and gene expression were compared under three different growth conditions. Our results indicate that hnd is strongly regulated at the transcriptional level and that its deletion has a drastic effect on the expression of genes for two enzymes, an aldehyde ferredoxin oxidoreductase and an alcohol dehydrogenase. We demonstrated here that Hnd is involved in ethanol metabolism when bacteria grow fermentatively and proposed that Hnd might oxidize part of the H2 produced during fermentation generating both NADH and reduced ferredoxin for ethanol production via its electron bifurcation mechanism.


Assuntos
Hidrogenase , Desulfovibrio , Elétrons , Etanol , Ferredoxinas/metabolismo , Hidrogênio/metabolismo , Hidrogenase/genética , Hidrogenase/metabolismo , NAD/metabolismo , Oxirredução , Ácido Pirúvico
7.
Microorganisms ; 9(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34946077

RESUMO

Recent studies have shown the presence of an abiotic electrical current across the walls of deep-sea hydrothermal chimneys, allowing the growth of electroautotrophic microbial communities. To understand the role of the different phylogenetic groups and metabolisms involved, this study focused on electrotrophic enrichment with nitrate as electron acceptor. The biofilm density, community composition, production of organic compounds, and electrical consumption were monitored by FISH confocal microscopy, qPCR, metabarcoding, NMR, and potentiostat measurements. A statistical analysis by PCA showed the correlation between the different parameters (qPCR, organic compounds, and electron acceptors) in three distinct temporal phases. In our conditions, the Archaeoglobales have been shown to play a key role in the development of the community as the first colonizers on the cathode and the first producers of organic compounds, which are then used as an organic source by heterotrophs. Finally, through subcultures of the community, we showed the development of a greater biodiversity over time. This observed phenomenon could explain the biodiversity development in hydrothermal contexts, where energy sources are transient and unstable.

8.
Sci Rep ; 11(1): 14782, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285254

RESUMO

Deep-sea hydrothermal vents are extreme and complex ecosystems based on a trophic chain. We are still unsure of the identities of the first colonizers of these environments and their metabolism, but they are thought to be (hyper)thermophilic autotrophs. Here we investigate whether the electric potential observed across hydrothermal chimneys could serve as an energy source for these first colonizers. Experiments were performed in a two-chamber microbial electrochemical system inoculated with deep-sea hydrothermal chimney samples, with a cathode as sole electron donor, CO2 as sole carbon source, and nitrate, sulfate, or oxygen as electron acceptors. After a few days of culturing, all three experiments showed growth of electrotrophic biofilms consuming the electrons (directly or indirectly) and producing organic compounds including acetate, glycerol, and pyruvate. Within the biofilms, the only known autotroph species retrieved were members of Archaeoglobales. Various heterotrophic phyla also grew through trophic interactions, with Thermococcales growing in all three experiments as well as other bacterial groups specific to each electron acceptor. This electrotrophic metabolism as energy source driving initial microbial colonization of conductive hydrothermal chimneys is discussed.

9.
Anal Chem ; 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34133140

RESUMO

Nuclear magnetic resonance (NMR)-based metabolomic studies commonly involve the use of T2 filter pulse sequences to eliminate or attenuate the broad signals from large molecules and improve spectral resolution. In this paper, we demonstrate that the T1ρ filter-based pulse sequence represents an interesting alternative because it allows the stability and the reproducibility needed for statistical analysis. The integrity of the samples and the stability of the instruments were assessed for different filter durations and amplitudes. We showed that the T1ρ filter pulse sequence did not induce sample overheating for a filter duration of up to 500 ms. The reproducibility was evaluated and compared with the T2 filter in serum and liver samples. The implementation is relatively simple and provides the same statistical and analytical results as those obtained with the standard filters. Regarding tissues analysis, because the duration of the filter is the same as that of the spin-lock, the synchronization of the echo delays with the magic angle spinning (MAS) rate is no longer necessary as for T2 filter-based sequences. The results presented in this article aim at establishing a new protocol to improve metabolomic studies and pave the way for future developments on T1ρ alternative filters, in liquid and HR-MAS NMR experiments.

10.
Molecules ; 26(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919750

RESUMO

Breast cancer (BC) is the most common form of cancer among women worldwide. Despite the huge advancements in its treatment, the exact etiology of breast cancer still remains unresolved. There is an increasing interest in the role of the gut microbiome in modulating the anti-cancer therapeutic response. It seems that alteration of the microbiome-derived metabolome potentially promotes carcinogenesis. Taken together, metabolomics has arisen as a fascinating new omics field to screen promising metabolic biomarkers. In this study, fecal metabolite profiling was performed using NMR spectroscopy, to identify potential biomarker candidates that can predict response to neoadjuvant chemotherapy (NAC) for breast cancer. Metabolic profiles of feces from patients (n = 8) following chemotherapy treatment cycles were studied. Interestingly, amino acids were found to be upregulated, while lactate and fumaric acid were downregulated in patients under the second and third cycles compared with patients before treatment. Furthermore, short-chain fatty acids (SCFAs) were significantly differentiated between the studied groups. These results strongly suggest that chemotherapy treatment plays a key role in modulating the fecal metabolomic profile of BC patients. In conclusion, we demonstrate the feasibility of identifying specific fecal metabolic profiles reflecting biochemical changes that occur during the chemotherapy treatment. These data give an interesting insight that may complement and improve clinical tools for BC monitoring.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Fezes/química , Metabolômica , Terapia Neoadjuvante , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Análise Discriminante , Ácidos Graxos Voláteis/metabolismo , Feminino , Humanos , Análise dos Mínimos Quadrados , Masculino , Redes e Vias Metabólicas , Metaboloma , Pessoa de Meia-Idade , Análise de Componente Principal , Espectroscopia de Prótons por Ressonância Magnética , Curva ROC
11.
Cell Rep Med ; 1(8): 100143, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33294863

RESUMO

Mitochondrial respiration (oxidative phosphorylation, OXPHOS) is an emerging target in currently refractory cancers such as pancreatic ductal adenocarcinoma (PDAC). However, the variability of energetic metabolic adaptations between PDAC patients has not been assessed in functional investigations. In this work, we demonstrate that OXPHOS rates are highly heterogeneous between patient tumors, and that high OXPHOS tumors are enriched in mitochondrial respiratory complex I at protein and mRNA levels. Therefore, we treated PDAC cells with phenformin (complex I inhibitor) in combination with standard chemotherapy (gemcitabine), showing that this treatment is synergistic specifically in high OXPHOS cells. Furthermore, phenformin cooperates with gemcitabine in high OXPHOS tumors in two orthotopic mouse models (xenografts and syngeneic allografts). In conclusion, this work proposes a strategy to identify PDAC patients likely to respond to the targeting of mitochondrial energetic metabolism in combination with chemotherapy, and that phenformin should be clinically tested in appropriate PDAC patient subpopulations.


Assuntos
Respiração Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Complexo I de Transporte de Elétrons/genética , Neoplasias Pancreáticas/genética , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Respiração Celular/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Fosforilação Oxidativa/efeitos dos fármacos , Células PC-3 , Neoplasias Pancreáticas/tratamento farmacológico , Fenformin/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Gencitabina , Neoplasias Pancreáticas
13.
Faraday Discuss ; 218(0): 459-480, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31173013

RESUMO

Analytical methods for mixtures of small molecules require specificity (is a certain molecule present in the mix?) and speciation capabilities. NMR spectroscopy has been a tool of choice for both of these issues since its early days, due to its quantitative (linear) response, sufficiently high resolving power and capabilities of inferring molecular structures from spectral features (even in the absence of a reference database). However, the analytical performances of NMR spectroscopy are being stretched by the increased complexity of the samples, the dynamic range of the components, and the need for a reasonable turnover time. One approach that has been actively pursued for disentangling the composition complexity is the use of 2D NMR spectroscopy. While any of the many experiments from this family will increase the spectral resolution, some are more apt for mixtures, as they are capable of unveiling signals belonging to whole molecules or fragments of it. Among the most popular ones, one can enumerate HSQC-TOCSY, DOSY and Maximum-Quantum (MaxQ) NMR spectroscopy. For multicomponent samples, the development of robust mathematical methods of signal decomposition would provide a clear edge towards identification. We have been pursuing, along these lines, Blind Source Separation (BSS). Here, the un-mixing of the spectra is achieved relying on correlations detected on a series of datasets. The series could be associated with samples of different relative composition or in a classically acquired 2D experiment by the mathematical laws underlying the construction of the indirect dimension, the one not recorded by the spectrometer. Many algorithms have been proposed for BSS in NMR spectroscopy since the seminal work of Nuzillard. In this paper, we use rather standard algorithms in BSS in order to disentangle NMR spectra. We show on simulated data (both 1D and 2D HSQC) that these approaches enable us to accurately disentangle multiple components, and provide good estimates for the concentrations of compounds. Furthermore, we show that after proper realignment of the signals, the same algorithms are able to disentangle real 1D NMR spectra. We obtain similar results on 2D HSQC spectra, where the BSS algorithms are able to successfully disentangle components, and provide even better estimates for concentrations.

14.
Cell Metab ; 29(6): 1243-1257.e10, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30827861

RESUMO

Diffuse large B cell lymphoma (DLBCL) is a heterogeneous disease treated with anti-CD20-based immuno-chemotherapy (R-CHOP). We identified that low levels of GAPDH predict a poor response to R-CHOP treatment. Importantly, we demonstrated that GAPDHlow lymphomas use OxPhos metabolism and rely on mTORC1 signaling and glutaminolysis. Consistently, disruptors of OxPhos metabolism (phenformin) or glutaminolysis (L-asparaginase) induce cytotoxic responses in GAPDHlow B cells and improve GAPDHlow B cell-lymphoma-bearing mice survival, while they are low or not efficient on GAPDHhigh B cell lymphomas. Ultimately, we selected four GAPDHlow DLBCL patients, who were refractory to all anti-CD20-based therapies, and targeted DLBCL metabolism using L-asparaginase (K), mTOR inhibitor (T), and metformin (M) (called KTM therapy). Three out of the four patients presented a complete response upon one cycle of KTM. These findings establish that the GAPDH expression level predicts DLBCL patients' response to R-CHOP treatment and their sensitivity to specific metabolic inhibitors.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Gliceraldeído-3-Fosfato Desidrogenases/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Células Cultivadas , Estudos de Coortes , Ciclofosfamida/uso terapêutico , Doxorrubicina/uso terapêutico , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Células HEK293 , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Prednisona/uso terapêutico , Prognóstico , Estudos Retrospectivos , Rituximab/uso terapêutico , Resultado do Tratamento , Vincristina/uso terapêutico , Adulto Jovem
15.
Life Sci Alliance ; 1(4): e201800073, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30456364

RESUMO

Like other tumors, aggressive soft tissue sarcomas (STS) use glycolysis rather than mitochondrial oxidative phosphorylation (OXPHOS) for growth. Given the importance of the cofactor coenzyme A (CoA) in energy metabolism, we investigated the impact of Vnn1 pantetheinase-an enzyme that degrades pantetheine into pantothenate (vitamin B5, the CoA biosynthetic precursor) and cysyteamine-on tumor growth. Using two models, we show that Vnn1+ STS remain differentiated and grow slowly, and that in patients a detectable level of VNN1 expression in STS is associated with an improved prognosis. Increasing pantetheinase activity in aggressive tumors limits their growth. Using combined approaches, we demonstrate that Vnn1 permits restoration of CoA pools, thereby maintaining OXPHOS. The simultaneous production of cysteamine limits glycolysis and release of lactate, resulting in a partial inhibition of STS growth in vitro and in vivo. We propose that the Warburg effect observed in aggressive STS is reversed by induction of Vnn1 pantetheinase and the rewiring of cellular energy metabolism by its products.

16.
Metabolomics ; 14(10): 141, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30830426

RESUMO

INTRODUCTION: Ultrasound examination coupled with fine-needle aspiration (FNA) cytology is the gold standard for the diagnosis of thyroid cancer. However, about 10-40% of these analyses cannot be conclusive on the malignancy of the lesions and lead to surgery. The cytological indeterminate FNA biopsies are mainly constituted of follicular-patterned lesions, which are benign in 80% of the cases. OBJECTIVES: The development of a FNAB classification approach based on the metabolic phenotype of the lesions, complementary to cytology and other molecular tests in order to limit the number of patients undergoing unnecessary thyroidectomy. METHODS: We explored the potential of a NMR-based metabolomics approach to improve the quality of the diagnosis from FNABs, using thyroid tissues collected post-surgically. RESULTS: The NMR-detected metabolites were used to produce a robust OPLSDA model to discriminate between benign and malignant tumours. Malignancy was correlated with amino acids such as tyrosine, serine, alanine, leucine and phenylalanine and anti-correlated with myo-inositol, scyllo-inositol and citrate. Diagnosis accuracy was of 84.8% when only indeterminate lesions were considered. CONCLUSION: These results on model FNAB indicate that there is a clear interest in exploring the possibility to export NMR metabolomics to pre-surgical diagnostics.


Assuntos
Metabolômica , Ressonância Magnética Nuclear Biomolecular , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/metabolismo , Nódulo da Glândula Tireoide/diagnóstico , Nódulo da Glândula Tireoide/metabolismo , Biópsia por Agulha Fina , Feminino , Humanos , Masculino , Análise Multivariada , Neoplasias da Glândula Tireoide/cirurgia , Nódulo da Glândula Tireoide/cirurgia
17.
Sci Rep ; 7(1): 5880, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724959

RESUMO

The metabolic effects of an oral supplementation with a Curcuma longa extract, at a dose nutritionally relevant with common human use, on hepatic metabolism in rats fed a high fructose and saturated fatty acid (HFS) diet was evaluated. High-resolution magic-angle spinning NMR and GC/MS in combination with multivariate analysis have been employed to characterize the NMR metabolite profiles and fatty acid composition of liver tissue respectively. The results showed a clear discrimination between HFS groups and controls involving metabolites such as glucose, glycogen, amino acids, acetate, choline, lysophosphatidylcholine, phosphatidylethanolamine, and ß-hydroxybutyrate as well as an increase of MUFAs and a decrease of n-6 and n-3 PUFAs. Although the administration of CL did not counteract deleterious effects of the HFS diet, some metabolites, namely some n-6 PUFA and n-3 PUFA, and betaine were found to increase significantly in liver samples from rats having received extract of curcuma compared to those fed the HFS diet alone. This result suggests that curcuminoids may affect the transmethylation pathway and/or osmotic regulation. CL extract supplementation in rats appears to increase some of the natural defences preventing the development of fatty liver by acting on the choline metabolism to increase fat export from the liver.


Assuntos
Suplementos Nutricionais , Fígado/metabolismo , Extratos Vegetais/farmacologia , Animais , Betaína/metabolismo , Colina/metabolismo , Curcuma , Dieta Hiperlipídica , Análise Discriminante , Ácidos Graxos , Frutose , Glutationa/metabolismo , Análise dos Mínimos Quadrados , Masculino , Malondialdeído/metabolismo , Análise Multivariada , Espectroscopia de Prótons por Ressonância Magnética , Ratos Sprague-Dawley , Triglicerídeos/metabolismo
18.
PLoS One ; 10(8): e0135948, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26288372

RESUMO

We explored, using nuclear magnetic resonance (NMR) metabolomics and fatty acids profiling, the effects of a common nutritional complement, Curcuma longa, at a nutritionally relevant dose with human use, administered in conjunction with an unbalanced diet. Indeed, traditional food supplements have been long used to counter metabolic impairments induced by unbalanced diets. Here, rats were fed either a standard diet, a high level of fructose and saturated fatty acid (HFS) diet, a diet common to western countries and that certainly contributes to the epidemic of insulin resistance (IR) syndrome, or a HFS diet with a Curcuma longa extract (1% of curcuminoids in the extract) for ten weeks. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) on the serum NMR profiles and fatty acid composition (determined by GC/MS) showed a clear discrimination between HFS groups and controls. This discrimination involved metabolites such as glucose, amino acids, pyruvate, creatine, phosphocholine/glycerophosphocholine, ketone bodies and glycoproteins as well as an increase of monounsaturated fatty acids (MUFAs) and a decrease of n-6 and n-3 polyunsaturated fatty acids (PUFAs). Although the administration of Curcuma longa did not prevent the observed increase of glucose, triglycerides, cholesterol and insulin levels, discriminating metabolites were observed between groups fed HFS alone or with addition of a Curcuma longa extract, namely some MUFA and n-3 PUFA, glycoproteins, glutamine, and methanol, suggesting that curcuminoids may act respectively on the fatty acid metabolism, the hexosamine biosynthesis pathway and alcohol oxidation. Curcuma longa extract supplementation appears to be beneficial in these metabolic pathways in rats. This metabolomic approach highlights important serum metabolites that could help in understanding further the metabolic mechanisms leading to IR.


Assuntos
Curcuma/metabolismo , Ácidos Graxos/farmacologia , Xarope de Milho Rico em Frutose/farmacologia , Redes e Vias Metabólicas/fisiologia , Extratos Vegetais/farmacologia , Animais , Antioxidantes/metabolismo , Análise Química do Sangue , Glicemia/análise , Colesterol/sangue , Dieta , Gorduras na Dieta , Suplementos Nutricionais , Ácidos Graxos/administração & dosagem , Ácidos Graxos/sangue , Frutose/administração & dosagem , Xarope de Milho Rico em Frutose/administração & dosagem , Insulina/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Espectroscopia de Ressonância Magnética , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica , Estresse Oxidativo/fisiologia , Extratos Vegetais/administração & dosagem , Ratos , Ratos Sprague-Dawley , Triglicerídeos/sangue
19.
Metabolomics ; 11(4): 807-821, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26109925

RESUMO

The metabo-ring initiative brought together five nuclear magnetic resonance instruments (NMR) and 11 different mass spectrometers with the objective of assessing the reliability of untargeted metabolomics approaches in obtaining comparable metabolomics profiles. This was estimated by measuring the proportion of common spectral information extracted from the different LCMS and NMR platforms. Biological samples obtained from 2 different conditions were analysed by the partners using their own in-house protocols. Test #1 examined urine samples from adult volunteers either spiked or not spiked with 32 metabolite standards. Test #2 involved a low biological contrast situation comparing the plasma of rats fed a diet either supplemented or not with vitamin D. The spectral information from each instrument was assembled into separate statistical blocks. Correlations between blocks (e.g., instruments) were examined (RV coefficients) along with the structure of the common spectral information (common components and specific weights analysis). In addition, in Test #1, an outlier individual was blindly introduced, and its identification by the various platforms was evaluated. Despite large differences in the number of spectral features produced after post-processing and the heterogeneity of the analytical conditions and the data treatment, the spectral information both within (NMR and LCMS) and across methods (NMR vs. LCMS) was highly convergent (from 64 to 91 % on average). No effect of the LCMS instrumentation (TOF, QTOF, LTQ-Orbitrap) was noted. The outlier individual was best detected and characterised by LCMS instruments. In conclusion, untargeted metabolomics analyses report consistent information within and across instruments of various technologies, even without prior standardisation.

20.
Anal Chem ; 86(21): 10749-54, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25286333

RESUMO

High-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) is an essential tool to characterize a variety of semisolid systems, including biological tissues, with virtually no sample preparation. The "non-destructive" nature of NMR is typically compromised, however, by the extreme centrifugal forces experienced under conventional HR-MAS frequencies of several kilohertz. These features limit the usefulness of current HR-MAS approaches for fragile samples. Here, we introduce a full protocol for acquiring high-quality HR-MAS NMR spectra of biological tissues at low spinning rates (down to a few hundred hertz). The protocol first consists of a carefully designed sample preparation, which yields spectra without significant spinning sidebands at low spinning frequency for several types of sample holders, including the standard disposable inserts classically used in HR-MAS NMR-based metabolomics. Suppression of broad spectral features is then achieved using a modified version of the recently introduced PROJECT experiment with added water suppression and rotor synchronization, which deposits limited power in the sample and which can be suitably rotor-synchronized at low spinning rates. The performance of the slow HR-MAS NMR procedure is demonstrated on conventional (liver tissue) and very delicate (fish eggs) samples, for which the slow-spinning conditions are shown to preserve the structural integrity and to minimize intercompartmental leaks of metabolites. Taken together, these results expand the applicability and reliability of HR-MAS NMR spectroscopy. These results have been obtained at 400 and 600 MHz and suggest that high-quality slow HR-MAS spectra can be expected at higher magnetic fields using the described protocol.


Assuntos
Fígado/química , Espectroscopia de Ressonância Magnética/métodos , Animais , Bovinos , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...