Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene Expr Patterns ; 25-26: 29-35, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28479482

RESUMO

We have cloned and characterized the expression of a novel maternal gene festina lente (designated Ttu-fel) from the clitellate annelid Tubifex tubifex. Northern blot analyses have shown that Ttu-fel mRNA is approximately 8 kbp in length and that its expression is restricted to oocytes undergoing maturation division and early embryos up to 22-cell stage. Maternal transcripts of Ttu-fel are first detected in oocytes in the ovary of young adults (ca. 40 days after hatching); its expression continues in growing oocytes in the ovisac. Ttu-fel mRNA is distributed broadly throughout the egg undergoing maturation divisions. During the process of ooplasmic segregation that results in the pole plasm formation, Ttu-fel mRNA becomes concentrated to the animal and vegetal poles. The RNA in the animal hemisphere is distributed in a gradient with highest concentration in the cortical region. During the first two cleavages, Ttu-fel mRNA is segregated to CD cell then to D cell; it is subsequently inherited by the three D quadtrant micromeres, 1d, 2d and 3d. Around the time of transition to 22-cell stage, Ttu-fel mRNA becomes undetectable throughout the embryo.


Assuntos
Clonagem Molecular/métodos , Oligoquetos/embriologia , Proteínas/genética , Sequência de Aminoácidos , Animais , Padronização Corporal , Ectoderma/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Herança Materna , Oligoquetos/genética , Oligoquetos/metabolismo , Oócitos/metabolismo
2.
Dev Biol ; 379(2): 246-57, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23652028

RESUMO

The primordial germ cells (PGCs) in the oligochaete annelid Tubifex tubifex are descentants of the mesodermal (M) teloblast and are located in the two midbody segments X and XI in which they serve as germline precursors forming the testicular gonad and the ovarian gonad, respectively. During embryogenesis, vasa-expressing cells (termed presumptive PGCs or pre-PGCs) emerge in a variable set of midbody segments including the genital segments (X and XI); at the end of embryogenesis, pre-PGCs are confined to the genital segments, where they become PGCs in the juvenile. Here, using live imaging of pre-PGCs, we have demonstrated that during Tubifex embryogenesis, pre-PGCs (defined by Vasa expression) stay in segments where they have emerged, suggesting that it is unlikely that pre-PGCs move intersegmentally during embryogenesis. Thus, it is apparent that pre-PGCs derived from the 10th and 11th M teloblast-derived primary m blast cells (designated m10 and m11) that give rise, respectively, to segments X and XI are specified in situ as PGCs and that those born in other segments become undetectable at the end of embryogenesis. To address the mechanisms for this segment-specific development of PGCs, we have performed a set of cell-transplantation experiments as well as cell-ablation experiments. When m10 and m11 that are normally located in the mid region of the embryo were placed in positions near the anterior end of the host embryo, these cells formed two consecutive segments, which exhibited Vasa-positive PGC-like cells at early juvenile stage. This suggests that in terms of PGC generation, the fates of m10 and m11 remain unchanged even if they are placed in ectopic positions along the anteroposterior axis. Nor was the fate of m10 and m11 changed even if mesodermal blast cell chains preceding or succeeding m10 and m11 were absent. In a previous study, it was shown that PGC development in segments X and XI occurs normally in the absence of the overlying ectoderm. All this strongly suggests that irrespective of their surrounding cellular environments, m10 and m11 autonomously generate PGCs. We propose that m10 and m11 are exclusively specified as precursors of PGCs at the time of their birth from the M teloblast and that the M teloblast possesses a developmental program through which the sequence of mesodermal blast cell identities is determined.


Assuntos
Padronização Corporal/fisiologia , Linhagem da Célula/fisiologia , Células Germinativas/fisiologia , Gônadas/embriologia , Mesoderma/embriologia , Oligoquetos/embriologia , Animais , Imunofluorescência , Gônadas/citologia , Immunoblotting , Imuno-Histoquímica , Mesoderma/citologia , Microinjeções , Oligoquetos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...