Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Anim ; 72(4): 526-534, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37407493

RESUMO

Genome editing technology is widely used in the field of laboratory animal science for the production of genetic disease models and the analysis of gene function. One of the major technical problems in genome editing is the low efficiency of precise knock-in by homologous recombination compared to simple knockout via non-homologous end joining. Many studies have focused on this issue, and various solutions have been proposed; however, they have yet to be fully resolved. In this study, we established a system that can easily determine the genotype at the mouse (Mus musculus) Tyr gene locus for genome editing both in vitro and in vivo. In this genome editing system, by designing the Cas9 cleavage site and donor template, wild-type, knockout, and knock-in genotypes can be distinguished by restriction fragment length polymorphisms of PCR products. Moreover, the introduction of the H420R mutation in tyrosinase allows the determination of knock-in mice with specific coat color patterns. Using this system, we evaluated the effects of small-molecule compounds on the efficiency of genome editing in mouse embryos. Consequently, we successfully identified a small-molecule compound that improves knock-in efficiency in genome editing in mouse embryos. Thus, this genome editing system is suitable for screening compounds that can improve knock-in efficiency.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Camundongos , Mutação , Genótipo
2.
Biochem Biophys Res Commun ; 657: 119-127, 2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-37002985

RESUMO

Studying the non-human primate (NHP) brain is required for the translation of rodent research to humans, but remains a challenge for molecular, cellular, and circuit-level analyses in the NHP brain due to the lack of in vitro NHP brain system. Here, we report an in vitro NHP cerebral model using marmoset (Callithrix jacchus) embryonic stem cell-derived cerebral assembloids (CAs) that recapitulate inhibitory neuron migration and cortical network activity. Cortical organoids (COs) and ganglionic eminence organoids (GEOs) were induced from cjESCs and fused to generate CAs. GEO cells expressing the inhibitory neuron marker LHX6 migrated toward the cortical side of CAs. COs developed their spontaneous neural activity from a synchronized pattern to an unsynchronized pattern as COs matured. CAs containing excitatory and inhibitory neurons showed mature neural activity with an unsynchronized pattern. The CAs represent a powerful in vitro model for studying excitatory and inhibitory neuron interactions, cortical dynamics, and their dysfunction. The marmoset assembloid system will provide an in vitro platform for the NHP neurobiology and facilitate translation into humans in neuroscience research, regenerative medicine, and drug discovery.


Assuntos
Encéfalo , Callithrix , Animais , Encéfalo/fisiologia , Neurônios , Neurogênese , Células-Tronco Embrionárias
3.
Neurosci Res ; 185: 49-61, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36075457

RESUMO

Alzheimer's disease (AD) is the leading cause of dementia which afflicts tens of millions of people worldwide. Despite many scientific progresses to dissect the AD's molecular basis from studies on various mouse models, it has been suffered from evolutionary species differences. Here, we report generation of a non-human primate (NHP), common marmoset model ubiquitously expressing Amyloid-beta precursor protein (APP) transgenes with the Swedish (KM670/671NL) and Indiana (V717F) mutations. The transgene integration of generated two transgenic marmosets (TG1&TG2) was thoroughly investigated by genomic PCR, whole-genome sequencing, and fluorescence in situ hybridization. By reprogramming, we confirmed the validity of transgene expression in induced neurons in vitro. Moreover, we discovered structural changes in specific brain regions of transgenic marmosets by magnetic resonance imaging analysis, including in the entorhinal cortex and hippocampus. In immunohistochemistry, we detected increased Aß plaque-like structures in TG1 brain at 7 years old, although evident neuronal loss or glial inflammation was not observed. Thus, this study summarizes our attempt to establish an NHP AD model. Although the transgenesis approach alone seemed not sufficient to fully recapitulate AD in NHPs, it may be beneficial for drug development and further disease modeling by combination with other genetically engineered models and disease-inducing approaches.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Callithrix/genética , Modelos Animais de Doenças , Hibridização in Situ Fluorescente , Camundongos Transgênicos , Transgenes
4.
Transl Oncol ; 24: 101498, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35932594

RESUMO

Aquaporin-3 (AQP3), a water channel protein, has been found to be involved in cancer progression via water and small molecule transport function. However, drug development targeting AQP3 has not yet begun. Here, we showed that a recently established anti-AQP3 monoclonal antibody (mAb) suppresses tumor growth in allograft mouse colorectal tumor models produced using CT26 or MC38 cancer cells. Administration of the anti-AQP3 mAb to BALB/c mice with transplanted CT26 cells increased the M1/M2 ratio of tumor-associated macrophages (TAM) and improved the mitochondrial function of T cells in the tumor microenvironment (TME). Administration of anti-AQP3 mAb also restored the TAM-induced decrease in T cell proliferation. Macrophage depletion in wild-type mice counteracted the antitumor effect of anti-AQP3 mAb in the mouse tumor model, suggesting that one of the primary targets of anti-AQP3 mAb is macrophages. In in vitro studies using mice bone marrow monocytes and human monocyte THP-1 cells, anti-AQP3 mAb attenuated carcinoma cell-mediated polarization of monocytes into M2-like TAMs. These data suggest that anti-AQP3 mAb suppresses tumor growth by attenuating immunosuppressive M2-like TAMs, which in turn maintains the antitumor function of T cells in the TME. Thus, the anti-AQP3 mAb is a potential cancer therapy that functions by targeting TAMs.

5.
Stem Cell Res ; 53: 102375, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088004

RESUMO

We previously reported the non-viral derivation of transgene-free induced pluripotent stem cells (iPSCs) from somatic fibroblasts of a female beagle dog using an optimized induction medium and integration-free episomal vectors. Here, we report novel derivation of a male canine iPSC line OF35Y-iPS, which showed standard characteristics of pluripotency such as a strong gene expression profile of pluripotency markers, differentiation potential into all three germ layers, and normal karyotype (78XY). Furthermore, we demonstrated targeted integration of 2A-EGFP into the canine NANOS3 locus. The novel iPSC line would be a useful resource for stem cell research and regenerative veterinary medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Cães , Feminino , Fibroblastos , Masculino , Pesquisa com Células-Tronco , Transgenes
6.
Stem Cell Reports ; 16(4): 754-770, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33798453

RESUMO

Induced pluripotent stem cells (iPSCs) are capable of providing an unlimited source of cells from all three germ layers and germ cells. The derivation and usage of iPSCs from various animal models may facilitate stem cell-based therapy, gene-modified animal production, and evolutionary studies assessing interspecies differences. However, there is a lack of species-wide methods for deriving iPSCs, in particular by means of non-viral and non-transgene-integrating (NTI) approaches. Here, we demonstrate the iPSC derivation from somatic fibroblasts of multiple mammalian species from three different taxonomic orders, including the common marmoset (Callithrix jacchus) in Primates, the dog (Canis lupus familiaris) in Carnivora, and the pig (Sus scrofa) in Cetartiodactyla, by combinatorial usage of chemical compounds and NTI episomal vectors. Interestingly, the fibroblasts temporarily acquired a neural stem cell-like state during the reprogramming. Collectively, our method, robustly applicable to various species, holds a great potential for facilitating stem cell-based research using various animals in Mammalia.


Assuntos
Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mamíferos/metabolismo , Transgenes , Animais , Callithrix , Cães , Perfilação da Expressão Gênica , Vetores Genéticos/metabolismo , Camadas Germinativas/metabolismo , Células-Tronco Neurais/metabolismo , Plasmídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA-Seq , Especificidade da Espécie , Suínos , Vírus
7.
Stem Cell Res ; 51: 102164, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33453576

RESUMO

We previously reported the efficient targeted introduction of transgenes into the genomic DNA of the common marmoset (Callithrix jacchus) using CRISPR-Cas9. In this study, we generated a marmoset embryonic stem cell (ESC) line that ubiquitously expresses the tamoxifen-inducible Cre-driver ERT2CreERT2. We validated the pluripotency of the ESC line and also successfully demonstrated the temporal control of the Cre-driver in a tamoxifen-dependent manner in the ESCs. This ESC line, named ActiCre-B1, will be a valuable resource for in vitro investigation of phenotypes related to embryonic lethality by targeted knockout of functionally important genes.


Assuntos
Callithrix , Tamoxifeno , Animais , Diferenciação Celular , Células-Tronco Embrionárias , Integrases , Tamoxifeno/farmacologia
8.
Cells ; 10(1)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375083

RESUMO

The common marmoset (Callithrix jacchus) has attracted considerable attention, especially in the biomedical science and neuroscience research fields, because of its potential to recapitulate the complex and multidimensional phenotypes of human diseases, and several neurodegenerative transgenic models have been reported. However, there remain several issues as (i) it takes years to generate late-onset disease models, and (ii) the onset age and severity of phenotypes can vary among individuals due to differences in genetic background. In the present study, we established an efficient and rapid direct neuronal induction method (induced neurons; iNs) from embryonic and adult marmoset fibroblasts to investigate cellular-level phenotypes in the marmoset brain in vitro. We overexpressed reprogramming effectors, i.e., microRNA-9/9*, microRNA-124, and Achaete-Scute family bHLH transcription factor 1, in fibroblasts with a small molecule cocktail that facilitates neuronal induction. The resultant iNs from embryonic and adult marmoset fibroblasts showed neuronal characteristics within two weeks, including neuron-specific gene expression and spontaneous neuronal activity. As directly reprogrammed neurons have been shown to model neurodegenerative disorders, the neuronal reprogramming of marmoset fibroblasts may offer new tools for investigating neurological phenotypes associated with disease progression in non-human primate neurological disease models.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Reprogramação Celular , Modelos Animais de Doenças , MicroRNAs , Doenças do Sistema Nervoso/metabolismo , Neurônios/metabolismo , Animais , Callithrix , Células Cultivadas , Fibroblastos
9.
Stem Cells Dev ; 29(12): 761-773, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32188344

RESUMO

Mammalian pluripotent stem cells are thought to exist in two states: naive and primed. Generally, unlike those in rodents, pluripotent stem cells in primates, including humans, are regarded as being in the primed pluripotent state. Recently, several groups reported the existence of naive pluripotent stem cells in humans. In this study, we report the conversion of primed state embryonic stem cells from common marmoset, a New World monkey, to the naive state using transgenes. The cells showed typical naive state features, including dome-like colony morphology, growth factor requirement, gene expression profile, X chromosome activation state, and energy metabolic status. Moreover, interspecies chimeric embryo formation ability with mouse embryos was increased in the naive state. This technique can be applied in basic medical research using nonhuman primates, such as preclinical use of naive pluripotent stem cells and generating genetically modified primates.


Assuntos
Células-Tronco Embrionárias/metabolismo , Engenharia Genética/métodos , Transgenes , Animais , Callithrix , Linhagem Celular , Forma Celular , Quimera/genética , Quimera/metabolismo , Células-Tronco Embrionárias/citologia , Metabolismo Energético , Transcriptoma , Inativação do Cromossomo X
10.
Stem Cell Res ; 44: 101740, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32151954

RESUMO

BLIMP1 (PRDM1) and VASA (DDX4) play pivotal roles in the development of the germ cell linage. Importantly, these genes are specifically expressed in germ cells; BLIMP1 in primordial germ cells (PGCs) to early-stage gonocytes, and VASA in migration-stage PGCs to mature gametes. The high reproductive efficiency of common marmosets (marmosets; Callithrix jacchus) makes them advantageous for use in germ cell research. We herein report the generation of a male marmoset embryonic stem cell (ESC) line harboring BLIMP1 and DDX4 double reporters. This ESC line will be a useful tool for investigating male gametogenesis in non-human primates.


Assuntos
Callithrix , Linhagem Celular , Células-Tronco Embrionárias , Transposases , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Células Germinativas , Masculino
11.
Neurosci Res ; 155: 1-11, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31586586

RESUMO

The common marmoset (marmoset; Callithrix jacchus) harbors various desired features as a non-human primate (NHP) model for neuroscience research. Recently, efforts have been made to induce neural cells in vitro from marmoset pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), which are characterized by their capacity to differentiate into all cell types from the three germ layers. Successful generation of marmoset neural cells is not only invaluable for understanding neural development and for modeling neurodegenerative and psychiatric disorders, but is also necessary for the phenotypic screening of genetically-modified marmosets. However, differences in the differentiation propensity among PSC lines hamper the applicability and the reproducibility of differentiation methods. To overcome this limitation, we evaluated the efficacy of small molecules for neural differentiation of marmoset ESCs (cjESCs) and iPSCs using multiple differentiation methods. By immunochemical and transcriptomic analyses, we confirmed that our methods using the small molecules are efficient for various differentiation protocols by either enhancing the yield of a mixture of neural cells including both neurons and glial cells, or a pure population of neurons. Collectively, our findings optimized in vitro neural differentiation methods for marmoset PSCs, which would ultimately help enhance the utility of the animal model in neuroscience.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Neurogênese/fisiologia , Neuroglia/metabolismo , Reprodutibilidade dos Testes
12.
Stem Cell Reports ; 13(4): 684-699, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31543469

RESUMO

Mutations in the microtubule-associated protein tau (MAPT) gene are known to cause familial frontotemporal dementia (FTD). The R406W tau mutation is a unique missense mutation whose patients have been reported to exhibit Alzheimer's disease (AD)-like phenotypes rather than the more typical FTD phenotypes. In this study, we established patient-derived induced pluripotent stem cell (iPSC) models to investigate the disease pathology induced by the R406W mutation. We generated iPSCs from patients and established isogenic lines using CRISPR/Cas9. The iPSCs were induced into cerebral organoids, which were dissociated into cortical neurons with high purity. In this neuronal culture, the mutant tau protein exhibited reduced phosphorylation levels and was increasingly fragmented by calpain. Furthermore, the mutant tau protein was mislocalized and the axons of the patient-derived neurons displayed morphological and functional abnormalities, which were rescued by microtubule stabilization. The findings of our study provide mechanistic insight into tau pathology and a potential for therapeutic intervention.


Assuntos
Alelos , Substituição de Aminoácidos , Demência Frontotemporal/etiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Proteínas tau/genética , Calpaína/metabolismo , Progressão da Doença , Suscetibilidade a Doenças , Demência Frontotemporal/metabolismo , Demência Frontotemporal/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Fosforilação , Fosfotransferases/metabolismo , Proteínas tau/metabolismo
13.
PLoS One ; 14(8): e0221164, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31454364

RESUMO

Knock-in (KI) gene targeting can be employed for a wide range of applications in stem cell research. However, vectors for KI require multiple complicated processes for construction, including multiple times of digestion/ligation steps and extensive restriction mapping, which has imposed limitations for the robust applicability of KI gene targeting. To circumvent this issue, here we introduce versatile and systematic methods for generating KI vectors by molecular cloning. In this approach, we employed the Multisite Gateway technology, an efficient in vitro DNA recombination system using proprietary sequences and enzymes. KI vector construction exploiting these methods requires only efficient steps, such as PCR and recombination, enabling robust KI gene targeting. We show that combinatorial usage of the KI vectors generated using this method and site-specific nucleases enabled the precise integration of fluorescent protein genes in multiple loci of human and common marmoset (marmoset; Callithrix jacchus) pluripotent stem cells. The methods described here will facilitate the usage of KI technology and ultimately help to accelerate stem cell research.


Assuntos
DNA Recombinante/genética , Técnicas de Introdução de Genes/métodos , Marcação de Genes/métodos , Vetores Genéticos/genética , Animais , Callithrix/genética , Clonagem Molecular/métodos , Desoxirribonucleases/genética , Genes Reporter/genética , Proteínas de Fluorescência Verde/genética , Humanos , Pesquisa com Células-Tronco
14.
J Biol Chem ; 294(30): 11433-11444, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31171723

RESUMO

Tau is a microtubule-associated protein expressed in neuronal axons. Hyperphosphorylated tau is a major component of neurofibrillary tangles, a pathological hallmark of Alzheimer's disease (AD). Hyperphosphorylated tau aggregates are also found in many neurodegenerative diseases, collectively referred to as "tauopathies," and tau mutations are associated with familial frontotemporal lobar degeneration (FTLD). Previous studies have generated transgenic mice with mutant tau as tauopathy models, but nonhuman primates, which are more similar to humans, may be a better model to study tauopathies. For example, the common marmoset is poised as a nonhuman primate model for investigating the etiology of age-related neurodegenerative diseases. However, no biochemical studies of tau have been conducted in marmoset brains. Here, we investigated several important aspects of tau, including expression of different tau isoforms and its phosphorylation status, in the marmoset brain. We found that marmoset tau does not possess the "primate-unique motif" in its N-terminal domain. We also discovered that the tau isoform expression pattern in marmosets is more similar to that of mice than that of humans, with adult marmoset brains expressing only four-repeat tau isoforms as in adult mice but unlike in adult human brains. Of note, tau in brains of marmoset newborns was phosphorylated at several sites associated with AD pathology. However, in adult marmoset brains, much of this phosphorylation was lost, except for Ser-202 and Ser-404 phosphorylation. These results reveal key features of tau expression and phosphorylation in the marmoset brain, a potentially useful nonhuman primate model of neurodegenerative diseases.


Assuntos
Encéfalo/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Callithrix , Células Cultivadas , DNA Complementar/genética , Humanos , Camundongos , Camundongos Transgênicos , Fosforilação , Filogenia , Isoformas de Proteínas/genética , Proteínas tau/genética
15.
Biochem Biophys Res Commun ; 515(4): 593-599, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31178141

RESUMO

The common marmoset (marmoset; Callithrix jacchus) shows anatomical and physiological features that are in common with humans. Establishing induced pluripotent stem cells (iPSCs) from marmosets holds promise for enhancing the utility of the animal model for biomedical and preclinical studies. However, in spite of the presence of some previous reports on marmoset iPSCs, the reprogramming technology in marmosets is still under development. In particular, the efficacy of RNA-based reprogramming has not been thoroughly investigated. In this study, we attempted RNA-based reprogramming for deriving iPSCs from marmoset fibroblasts. Although we failed to derive iPSC colonies from marmoset fibroblasts by using a conventional RNA-based reprogramming method previously validated in human fibroblasts, we succeeded in deriving colony-forming cells with a modified induction medium supplemented with a novel set of small molecules. Importantly, following one-week culture of the colony-forming cells in conventional embryonic stem cell (ESC) medium, we obtained iPSCs which express endogenous pluripotent markers and show a differentiation potential into all three germ layers. Taken together, our results indicate that RNA-based reprogramming, which is valuable for deriving transgene-free iPSCs, is applicable to marmosets.


Assuntos
Técnicas de Cultura de Células , Reprogramação Celular , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , RNA/química , Animais , Callithrix , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Feminino , Regulação da Expressão Gênica , Humanos , Transcriptoma , Transgenes
16.
Sci Rep ; 9(1): 1528, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728412

RESUMO

Genome editing technology greatly facilitates the genetic modification of various cells and animals. The common marmoset (Callithrix jacchus), a small non-human primate which exhibits high reproductive efficiency, is a widely used animal model in biomedical research. Developing genome editing techniques in the common marmoset will further enhance its utility. Here, we report the successful establishment of a knock-in (KI) method for marmoset embryonic stem cells (ESCs), which is based on the CRISPR-Cas9 system. The use of CRISPR-Cas9, mediated by homologous recombination (HR), enhanced the KI efficiency in marmoset ESCs. Furthermore, we succeeded in performing KI in early-stage marmoset embryos. In the course of the experiments, we found that HR in the marmoset ESCs is innately highly efficient. This suggested that the marmoset possesses a repair mechanism for DNA double-strand breaks. The current study will facilitate the generation of genetically modified marmosets and gene function analysis in the marmoset.


Assuntos
Sistemas CRISPR-Cas , Quebras de DNA de Cadeia Dupla , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Edição de Genes , Técnicas de Introdução de Genes/métodos , Células-Tronco Neurais/citologia , Animais , Callithrix , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Feminino , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Marcação de Genes , Recombinação Homóloga , Humanos , Masculino , Modelos Animais , Proteína Proteolipídica de Mielina/antagonistas & inibidores , Proteína Proteolipídica de Mielina/genética , Células-Tronco Neurais/metabolismo
17.
Stem Cell Reports ; 9(6): 1825-1838, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29129686

RESUMO

Several groups have reported the existence of a form of pluripotency that resembles that of mouse embryonic stem cells (mESCs), i.e., a naive state, in human pluripotent stem cells; however, the characteristics vary between reports. The nuclear receptor ESRRB is expressed in mESCs and plays a significant role in their self-renewal, but its expression has not been observed in most naive-like human induced pluripotent stem cells (hiPSCs). In this study, we modified several methods for converting hiPSCs into a naive state through the transgenic expression of several reprogramming factors. The resulting cells express the components of the core transcriptional network of mESCs, including ESRRB, at high levels, which suggests the existence of naive-state hiPSCs that are similar to mESCs. We also demonstrate that these cells differentiate more readily into neural cells than do conventional hiPSCs. These features may be beneficial for their use in disease modeling and regenerative medicine.


Assuntos
Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes/metabolismo , Receptores de Estrogênio/genética , Animais , Diferenciação Celular/genética , Autorrenovação Celular/genética , Células Cultivadas , Reprogramação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Neurais/citologia , Células-Tronco Pluripotentes/citologia
18.
Exp Anim ; 65(3): 231-44, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26923756

RESUMO

Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes.


Assuntos
Técnicas Genéticas , Integrases/genética , Camundongos Transgênicos/genética , Recombinação Genética , Tamoxifeno , Transgenes , Animais , Antígenos Transformantes de Poliomavirus/genética , Fusão Gênica , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Oncogenes/genética , Fenótipo , Ativação Transcricional
19.
Neurosci Res ; 106: 55-61, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26643383

RESUMO

The synaptic protein α-synuclein has been identified as a major component of Lewy bodies, a pathological hallmark of Parkinson's disease (PD). Prior to the formation of Lewy bodies, mislocalization and aggregation of the α-synuclein in brain tissue is frequently observed in various neurodegenerative diseases. Aberrant accumulation and localization of α-synuclein are also observed in the aging human brain, for which reason aging is regarded as a risk factor for neurodegenerative disease. To investigate changes in α-synuclein properties in the aging brain, we compared α-synuclein immunoreactivity in brain tissue of young (2-years-old) and middle-aged (6-years-old) common marmoset (Callithrix jacchus). Our analyses revealed marked changes in α-synuclein immunoreactivity in the olfactory bulb of common marmosets of these age cohorts. Perikaryal α-synuclein aggregations were formed in the olfactory bulb in middle-aged animals. We also observed signals of α-synuclein accumulation in hippocampus in this cohort; however, unlike in the olfactory bulb, hippocampal α-synuclein signals were localized in the synaptic terminals. We did not observe either of these features in younger marmosets, which suggest that aging may play a role in these phenomena. Our results using common marmoset brain corresponded with the observation that the α-synuclein aggregations were first occurred from olfactory bulb in human normal aged and PD brain. Therefore, common marmoset is expected as useful model for α-synuclein pathology.


Assuntos
Bulbo Olfatório/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Callithrix , Feminino , Agregados Proteicos , Frações Subcelulares/metabolismo
20.
J Reprod Dev ; 58(1): 77-83, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22052006

RESUMO

A number of mouse ES cells from inbred strains have been established to date, but efficiency varies across the different strains. The 129 strain mouse is efficient to establish, whereas C57BL/6 and BALB/c strains are not. It is possible that their genetic backgrounds account for the difference in their ability to establish ES cell lines. In this study, we attempted to establish C57BL/6J and BALB/c Cr ES cells by dual inhibition (2i) using two inhibitors (PD0325901 and CHIR99021) of extracellular signal regulated-kinase (ERK) and glycogen synthase kinase-3 (GSK-3), which promote ES cell differentiation. The results revealed that the establishment efficiencies of C57BL/6J and BALB/c Cr ES cells were remarkably increased by 2i. These ES cells stably expressed pluripotent markers and generated high-contribution chimeras with germline transmission. Furthermore, we generated germline chimeras from C57BL/6J ES cells through the method of gene modification. These findings indicate that 2i is a powerful tool for establishing C57BL/6J and BALB/c Cr ES cells with the ability to generate germline chimeras.


Assuntos
Benzamidas/farmacologia , Quimera , Difenilamina/análogos & derivados , Células-Tronco Embrionárias/citologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Células Germinativas/citologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Separação Celular/métodos , Difenilamina/farmacologia , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...