Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 49(4): 525-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23642096

RESUMO

The emergence of nanotechnology has produced a multitude of engineered nanomaterials such as carbon nanotubes (CNTs), and concerns have been raised about their effects on human health, especially for susceptible populations such as individuals with asthma. Multiwalled CNTs (MWCNTs) have been shown to exacerbate ovalbumin (OVA)-induced airway remodeling in mice. Moreover, cyclooxygenase-2 (COX-2) has been described as a protective factor in asthma. We postulated that COX-2-deficient (COX-2(-/-)) mice would be susceptible to MWCNT-induced exacerbations of allergen-induced airway remodeling, including airway inflammation, fibrosis, and mucus-cell metaplasia (i.e., the formation of goblet cells). Wild-type (WT) or COX-2(-/-) mice were sensitized to OVA to induce allergic airway inflammation before a single dose of MWCNTs (4 mg/kg) delivered to the lungs by oropharyngeal aspiration. MWCNTs significantly increased OVA-induced lung inflammation and mucus-cell metaplasia in COX-2(-/-) mice compared with WT mice. However, airway fibrosis after exposure to allergen and MWCNTs was no different between WT and COX-2(-/-) mice. Concentrations of certain prostanoids (prostaglandin D2 and thromboxane B2) were enhanced by OVA or MWCNTs in COX-2(-/-) mice. No differences in COX-1 mRNA concentrations were evident between WT and COX-2(-/-) mice treated with OVA and MWCNTs. Interestingly, MWCNTs significantly enhanced allergen-induced cytokines involved in Th2 (IL-13 and IL-5), Th1 (CXCL10), and Th17 (IL-17A) inflammatory responses in COX-2(-/-) mice, but not in WT mice. We conclude that exacerbations of allergen-induced airway inflammation and mucus-cell metaplasia by MWCNTs are enhanced by deficiencies in COX-2, and are associated with the activation of a mixed Th1/Th2/Th17 immune response.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Alérgenos/imunologia , Ciclo-Oxigenase 2/imunologia , Nanotubos de Carbono , Remodelação das Vias Aéreas/genética , Remodelação das Vias Aéreas/imunologia , Animais , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/imunologia , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/imunologia , Feminino , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Metaplasia/genética , Metaplasia/imunologia , Metaplasia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Muco/imunologia , Muco/metabolismo , Ovalbumina/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
2.
Part Fibre Toxicol ; 9: 14, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22571318

RESUMO

BACKGROUND: Carbon nanotubes (CNTs) are engineered graphene cylinders with numerous applications in engineering, electronics and medicine. However, CNTs cause inflammation and fibrosis in the rodent lung, suggesting a potential human health risk. We hypothesized that multi-walled CNTs (MWCNTs) induce two key inflammatory enzymes in macrophages, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), through activation of extracellular signal-regulated kinases (ERK1,2). METHODS: RAW264.7 macrophages were exposed to MWCNTs or carbon black nanoparticles (CBNPs) over a range of doses and time course. Uptake and subcellular localization of MWCNTs was visualized by transmission electron microscopy (TEM). Protein levels of COX-2, iNOS, and ERK1,2 (total ERK and phosphorylated ERK) were measured by Western blot analysis. Prostaglandin-E(2) (PGE(2)) and nitric oxide (NO) levels in cell supernatants were measured by ELISA and Greiss assay, respectively. RESULTS: MWCNTs, but not CBNPs, induced COX-2 and iNOS in a time- and dose-dependent manner. COX-2 and iNOS induction by MWCNTs correlated with increased PGE(2) and NO production, respectively. MWCNTs caused ERK1,2 activation and inhibition of ERK1,2 (U0126) blocked MWCNT induction of COX-2 and PGE2 production, but did not reduce the induction of iNOS. Inhibition of iNOS (L-NAME) did not affect ERK1,2 activation, nor did L-NAME significantly decrease COX-2 induction by MWCNT. Nickel nanoparticles (NiNPs), which are present in MWCNTs as a residual catalyst, also induced COX-2 via ERK-1,2. However, a comparison of COX-2 induction by MWCNTs containing 4.5 and 1.8% Ni did not show a significant difference in ability to induce COX-2, indicating that characteristics of MWCNTs in addition to Ni content contribute to COX-2 induction. CONCLUSION: This study identifies COX-2 and subsequent PGE(2) production, along with iNOS induction and NO production, as inflammatory mediators involved in the macrophage response to MWCNTs. Furthermore, our work demonstrates that COX-2 induction by MWCNTs in RAW264.7 macrophages is ERK1,2-dependent, while iNOS induction by MWCNTs is ERK1,2-independent. Our data also suggest contributory physicochemical factors other than residual Ni catalyst play a role in COX-2 induction to MWCNT.


Assuntos
Ciclo-Oxigenase 2/biossíntese , Indução Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Macrófagos/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Óxido Nítrico Sintase Tipo II/biossíntese , Animais , Linhagem Celular , Dinoprostona/metabolismo , Relação Dose-Resposta a Droga , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Macrófagos/enzimologia , Macrófagos/ultraestrutura , Camundongos , Óxido Nítrico/metabolismo , Fuligem/toxicidade
3.
Nat Nanotechnol ; 4(11): 747-51, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19893520

RESUMO

Carbon nanotubes are shaped like fibres and can stimulate inflammation at the surface of the peritoneum when injected into the abdominal cavity of mice, raising concerns that inhaled nanotubes may cause pleural fibrosis and/or mesothelioma. Here, we show that multiwalled carbon nanotubes reach the subpleura in mice after a single inhalation exposure of 30 mg m(-3) for 6 h. Nanotubes were embedded in the subpleural wall and within subpleural macrophages. Mononuclear cell aggregates on the pleural surface increased in number and size after 1 day and nanotube-containing macrophages were observed within these foci. Subpleural fibrosis unique to this form of nanotubes increased after 2 and 6 weeks following inhalation. None of these effects was seen in mice that inhaled carbon black nanoparticles or a lower dose of nanotubes (1 mg m(-3)). This work suggests that minimizing inhalation of nanotubes during handling is prudent until further long-term assessments are conducted.


Assuntos
Nanotubos de Carbono/efeitos adversos , Pleura/efeitos dos fármacos , Aerossóis/efeitos adversos , Animais , Imunidade/efeitos dos fármacos , Exposição por Inalação/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanotubos de Carbono/ultraestrutura , Pleura/imunologia , Pleura/ultraestrutura , Fibrose Pulmonar/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...