Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(32): 11642-5, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25071186

RESUMO

Reactions among minerals and organic compounds in hydrothermal systems are critical components of the Earth's deep carbon cycle, provide energy for the deep biosphere, and may have implications for the origins of life. However, there is limited information as to how specific minerals influence the reactivity of organic compounds. Here we demonstrate mineral catalysis of the most fundamental component of an organic reaction: the breaking and making of a covalent bond. In the absence of mineral, hydrothermal reaction of cis- and trans-1,2-dimethylcyclohexane is extremely slow and generates many products. In the presence of sphalerite (ZnS), however, the reaction rate increases dramatically and one major product is formed: the corresponding stereoisomer. Isotope studies show that the sphalerite acts as a highly specific heterogeneous catalyst for activation of a single carbon-hydrogen bond in the dimethylcyclohexanes.


Assuntos
Compostos Orgânicos/química , Sulfetos/química , Compostos de Zinco/química , Catálise , Cicloexanos/química , Fenômenos Geológicos , Ligação de Hidrogênio , Minerais/química , Modelos Químicos , Fenômenos de Química Orgânica , Origem da Vida , Estereoisomerismo
2.
Environ Pollut ; 174: 150-6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23262070

RESUMO

The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3-67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types.


Assuntos
Arabidopsis/metabolismo , Compostos Férricos/metabolismo , Nanopartículas/análise , Poluentes do Solo/metabolismo , Arabidopsis/crescimento & desenvolvimento , Biomassa , Clorofila/metabolismo , Compostos Férricos/análise , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...