Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 50(6): 3359-3367, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36959772

RESUMO

BACKGROUND: Mechanical accuracy should be verified before implementing a proton stereotactic radiosurgery (SRS) program. Linear accelerator (Linac)-based SRS systems often use electronic portal imaging devices (EPIDs) to verify beam isocentricity. Because proton therapy systems do not have EPID, beam isocentricity tests of proton SRS may still rely on films, which are not efficient. PURPOSE: To validate that our proton SRS system meets mechanical precision requirements and to present an efficient method to evaluate the couch and gantry's rotational isocentricity for our proton SRS system. METHODS: A dedicated applicator to hold brass aperture for proton SRS system was designed. The mechanical precision of the system was tested using a metal ball and film for 11 combinations of gantry and couch angles. A more efficient quality assurance (QA) procedure was developed, which used a scintillator device to replace the film. The couch rotational isocentricity tests were performed using orthogonal kV x-rays with the couch rotated isocentrically to five positions (0°, 315°, 270°, 225°, and 180°). At each couch position, the distance between the metal ball in kV images and the imaging isocenter was measured. The gantry isocentricity tests were performed using a cone-shaped scintillator and proton beams at five gantry angles (0°, 45°, 90°, 135°, and 180°), and the isocenter position and the distance of each beam path to the isocenter were obtained. Daily QA procedure was performed for 1 month to test the robustness and reproducibility of the procedure. RESULTS: The gantry and couch rotational isocentricity exhibited sub-mm precision, with most measurements within ±0.5 mm. The 1-month QA results showed that the procedure was robust and highly reproducible to within ±0.2 mm. The gantry isocentricity test using the cone-shaped scintillator was accurate and sensitive to variations of ±0.2 mm. The QA procedure was efficient enough to be completed within 30 min. The 1-month isocentricity position variations were within 0.5 mm, which demonstrating that the overall proton SRS system was stable and precise. CONCLUSION: The proton SRS Winston-Lutz QA procedure using a cone-shaped scintillator was efficient and robust. We were able to verify radiation delivery could be performed with sub-mm mechanical precision.


Assuntos
Radiocirurgia , Prótons , Rotação , Reprodutibilidade dos Testes , Diagnóstico por Imagem , Aceleradores de Partículas , Imagens de Fantasmas
2.
J Pers Med ; 11(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34945783

RESUMO

Few studies have directly compared passive scattering (PS) to intensity-modulated proton therapy (IMPT) in the delivery of ultra-hypofractionated proton beams to the localized prostate cancer (PCa). In this preliminary study involving five patients previously treated with CyberKnife, treatment plans were created for PS and IMPT (36.25 CGE in five fractions with two opposing fields) to compare the dosimetric parameters to the planning target volume (PTV) and organs-at-risk (OAR: rectum, bladder, femoral heads). Both plans met the acceptance criteria. Significant differences were observed in the minimum and maximum doses to the PTV. The mean dose to the PTV was lower for PS (35.62 ± 0.26 vs. 37.18 ± 0.14; p = 0.002). Target coverage (D98%) was better for IMPT (96.79% vs. 99.10%; p = 0.004). IMPT resulted in significantly lower mean doses to the rectum (16.75 CGE vs. 6.88 CGE; p = 0.004) and bladder (17.69 CGE vs. 5.98 CGE p = 0.002). High dose to the rectum (V36.25 CGE) were lower with PS, but not significantly opposite to high dose to the bladder. No significant differences were observed in mean conformity index values, with a non-significant trend towards higher mean homogeneity index values for PS. Non-significant differences in the gamma index for both fields were observed. These findings suggest that both PS and IMPT ultra-hypofractionated proton therapy for PCa are highly precise, offering good target coverage and sparing of normal tissues and OARs.

3.
Med Phys ; 44(4): 1538-1544, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28196271

RESUMO

AIM: To evaluate the impact of radiochromic film positioning relative to the central beam axis (CAX) in proton beam therapy. Secondarily, to compare the dosimetric measurements obtained by RTQA and EBT film and to compare these to the doses calculated by the treatment planning system (TPS). METHODS: The EBT and RTQA dosimetric radiochromic films were immersed in a water phantom and irradiated with a proton beam. The films were placed parallel to the CAX and at a 5° angle on the horizontal plane to assess the effect of film inclination on Bragg peak profiles. Calibration was performed by irradiating small pieces of film at doses ranging from 0.0 Gy to 3.5 Gy in increments of 0.5 Gy. The TPS was used to create treatment plans for two different geometrical targets (cylindrical and cuboidal). After irradiation, all film pieces were scanned on a flatbed scanner and red channel data were extracted from the 48-bit RGB images using ImageJ, Photoshop, Origin8, and Excel software. The dose distributions from the irradiated films were compared to the dose obtained from the TPS. Bragg peak profiles were abstracted from the irradiated films and compared. RESULTS: The dosimetric measurements obtained by both EBT and RTQA positioned at a 5° to the CAX closely matched the dose calculated by the TPS for the cylindrical target. In contrast, dose distributions measured in the cuboidal targets were less precise. Gamma index (GI) values (3%/3 mm acceptance criteria for isodose >90% of dose) were 99.8% and 93% for EBT film placed at a 5° angle versus 47.1% and 80.8% for EBT film parallel to the beam. The dosimetric measurements in RTQA film positioned parallel to the CAX showed GI values with <27% agreement with the TPS-calculated dose. CONCLUSION: Our finding show that RTQA film can be used to accurately measure doses in the proton beam at the region of Bragg peak; however, to obtain the most accurate readings, the film should be positioned at a small angle to the CAX.


Assuntos
Dosimetria Fotográfica/métodos , Calibragem , Imagens de Fantasmas , Terapia com Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
4.
Rep Pract Oncol Radiother ; 19(1): 12-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24936315

RESUMO

AIM: To present the results obtained using radiochromic films EBT and RTQA 1010P for the reconstruction the dose distributions for targets irradiated by proton beam and modified by wax boluses. BACKGROUND: In Medico-Technical Complex at the Joint Institute for Nuclear Research in Dubna implemented technology of wax boluses. MATERIALS AND METHODS: Wax boluses are easier to make and they give better dose distributions than boluses made from modeling clay previously used at our center. We irradiated two imaginary targets, one shaped as a cylinder and the other one as two cuboids. The evaluated calibration curve was used for calculation of the dose distributions measured by the EBT and RTQA radiochromic film. In both cases, the measured dose distributions were compared to the dose distributions calculated by the treatment planning system (TPS). We also compared dose distributions using three different conformity indices at a 95% isodose. RESULTS: Better target coverage and better compliance of measurements (semiconductor detectors and radiochromic films) with calculated doses was obtained for cylindrical target than for cuboidal target. The 95% isodose covered well the tumor for both target shapes, while for cuboidal target larger volume around the target received therapeutic dose, due to the complicated target shape. The use wax boluses provided to be effective tool in modifying proton beam to achieve appropriate shape of isodose distribution. CONCLUSION: EBT film yielded the best visual matching. Both EBT and RTQA films confirmed good conformity between calculated and measured doses, thus confirming that wax boluses used to modify the proton beam resulted in good dose distributions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...