Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 645: 109-14, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19227458

RESUMO

Phytyl quinols, namely acyclic tocopherols, are key intermediates of tocopherol biosynthesis, but their biological activities remain unclear. We therefore investigated the structure-activity relationship of phytyl quinols to apply a chemical biosynthesis design for an antiatherosclerosis drug based on isoprenomics. We have achieved the biosynthesis-oriented design and synthesis of alpha- (TX-2254) and beta-(TX-2247) phytyl quinol as an unnatural intermediate, other gamma- (TX-2242) and delta-(TX-2231) phytyl quinol as a natural one. Geometry optimization and Molecular orbital (MO) calculation of TX-2254 showed a unique right-angle structure; however, MO energy of TX-2254 and d-alpha-tocopherol were very similar. Radical reactivity of TX-2231 was equal to dl-alpha-tocopherol, whereas TX-2254, TX-2247, and TX-2231 showed lower reactivity than dl-alpha-tocopherol. All four phytyl quinols showed almost the same moderate inhibitory activity against low-density lipoprotein (LDL) oxidation instead of their different degree of C-methylation with character different from tocopherols. In vivo toxicities of phytyl quinols against chick embryo chorioallantoic membrane (CAM) vasculature were hardly observed. We proposed phytyl quinols were possible antioxidants in plants and animals, like vitamin E.


Assuntos
Aterosclerose , Desenho de Fármacos , Tocoferóis/química , Tocoferóis/metabolismo , Animais , Antioxidantes/química , Aterosclerose/tratamento farmacológico , Técnicas de Química Analítica , Embrião de Galinha , Humanos , Isomerismo , Modelos Moleculares , Estrutura Molecular , Tocoferóis/uso terapêutico
2.
Anal Sci ; 19(4): 525-8, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12725386

RESUMO

The purpose of this study is to clarify the chemical characterization of PM2.5 and PM10 in diesel exhaust particles (DEP). Sampling of PM2.5 and PM10 in DEP was carried out in November 1999 using an automobile exhaust testing system at the National Traffic Safety and Environment Laboratory, with a diesel truck (engine type: direct injection, displacement: 7,961 cc, carrying weight: 2,020 kg, equivalent inertia weight: 5,600 kg) placed on a chassis dynamometer. Sampling conditions included idling, constant speed of 40 km/h, M-15 test pattern and 60%-revolution/40%-load of maximum power. Samples were collected on a polycarbonate membrane filter (Nuclepore, pore size: 0.8 microm) using a MiniVol Portable Air Sampler (Airmetrics Co., Inc.). The concentrations of several elemental and ionic species in the PM2.5 and PM10 samples were determined by particle induced X-ray emission (PIXE) and ion chromatography analysis. PIXE analysis of the PM2.5 and PM10 samples revealed 15 elements, of which Na, Mg, Si, S, Cl, Ca, Fe and Zn were found to be the major components. Ionic species were Cl-, NO2-, NO3-, SO4(2-), Na+, NH4+, K+ and Ca2+. Concentrations of elements and ionic species under the sampling condition of 60%-revolution/40%-load were highest in comparison with those of the other sampling conditions. The elemental and ionic species data were compared for PM2.5 and PM10; PM2.5 concentrations were 70% or more of PM10 concentrations for the majority of elements, and concentrations of ionic species in PM2.5 and PM10 were almost identical.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...