Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(20): 13900-13904, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38699686

RESUMO

Since the discovery of ferroelectricity in a wurtzite-type structure, this structural type has gathered much attention as a next-generation ferroelectric material due to its high polarization value combined with its high breakdown strength. However, the main targets of wurtzite-type ferroelectrics have been limited thus far to simple nitride/oxide compounds. The investigation of new ferroelectric materials with wurtzite-type structures is important for understanding ferroelectricity in such structures. We therefore focus on ß-LiGaO2 in this study. Although AlN and ZnO possess well-known wurtzite-type structures (P63mc), ß-LiGaO2 has a distorted wurtzite-type structure (Pna21), and there are no reports of ferroelectricity in LiGaO2. In this study, we have revealed that LiGaO2 exhibits relatively high barrier height energy for polarization switching, however, Sc doping effectively reduces that energy. Then, we conducted thin film preparation and evaluation for Sc-doped LiGaO2 to observe its ferroelectric properties. We successfully observed ferroelectric behavior by using piezoresponse force microscopy measurements for LiGa0.8Sc0.2O2/SrRuO3/(111)SrTiO3.

2.
Sci Rep ; 9(1): 6715, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040305

RESUMO

Lattice mismatch-induced biaxial strain effect on the crystal structure and growth mechanism is investigated for the BiFeO3 films grown on La0.6Sr0.4MnO3/SrTiO3 and YAlO3 substrates. Nano-beam electron diffraction, structure factor calculation and x-ray reciprocal space mapping unambiguously confirm that the crystal structure within both of the BiFeO3 thin films is rhombohedral by showing the rhombohedral signature Bragg's reflections. Further investigation with atomic resolution scanning transmission electron microscopy reveals that while the ~1.0% of the lattice mismatch found in the BiFeO3 grown on La0.6Sr0.4MnO3/SrTiO3 is exerted as biaxial in-plane compressive strain with atomistically coherent interface, the ~6.8% of the lattice mismatch found in the BiFeO3 grown on YAlO3 is relaxed at the interface by introducing dislocations. The present result demonstrates the importance of: (1) identification of the epitaxial relationship between BFO and its substrate material to quantitatively evaluate the amount of the lattice strain within BFO film and (2) the atomistically coherent BFO/substrate interface for the lattice mismatch to exert the lattice strain.

3.
Microscopy (Oxf) ; 68(3): 271-278, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30843044

RESUMO

The in situ annealing observation in transmission electron microscope (TEM) is one of the effective methods for imaging thermally induced microstructural changes. For applying this dynamical characterization to bulk samples fabricated by ion-milling, electro-polishing or focused ion beam (FIB) mill, it is generally needed to use a heating-pot type system. We here report an initial trial to improve the spatial and temporal resolution during the in-situ annealing observation of bulk samples using a spherical aberration corrected (AC) TEM with a new thermal control unit. The information limit of 1.5 Å and the point resolution of 2.0 Å are achieved under isothermal annealing at 350°C, which is the same resolution at room temperature, and it is affected strongly of sample drift by the temperature variation. The sample is heated at a heating rate of +1.0°C/s, the drift distance observed by a TV readout speed CCD camera is less than 2.0 Å/s.

4.
Sci Rep ; 7(1): 9641, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851927

RESUMO

Ferroelastic domain switching significantly affects piezoelectric properties in ferroelectric materials. The ferroelastic domain switching and the lattice deformation of both a-domains and c-domains under an applied electric field were investigated using in-situ synchrotron X-ray diffraction in conjunction with a high-speed pulse generator set up for epitaxial (100)/(001)-oriented tetragonal Pb(Zr0.4Ti0.6)O3 (PZT) films grown on (100) c SrRuO3//(100)KTaO3 substrates. The 004 peak (c-domain) position shifts to a lower 2θ angle, which demonstrates the elongation of the c-axis lattice parameter of the c-domain under an applied electric field. In contrast, the 400 peak (a-domain) shifts in the opposite direction (higher angle), thus indicating a decrease in the a-axis lattice parameter of the a-domain. 90° domain switching from (100) to (001) orientations (from a-domain to c-domain) was observed by a change in the intensities of the 400 and 004 diffraction peaks by applying a high-speed pulsed electric field 200 ns in width. This change also accompanied a tilt in the angles of each domain from the substrate surface normal direction. This behaviour proved that the 90° domain switched within 40 ns under a high-speed pulsed electric field. Direct observation of such high-speed switching opens the way to design piezo-MEMS devices for high-frequency operation.

5.
Sci Rep ; 6: 20713, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26875929

RESUMO

To realize a high-temperature capacitor, uniaxially (001)-oriented CaBi4Ti4O15 films with various film thicknesses were prepared on (100)cSrRuO3/Ca2Nb3O10(-) nanosheet/glass substrates. As the film thickness decreases to 50 nm, the out-of-plane lattice parameters decrease while the in-plane lattice ones increase due to the in-plane tensile strain. However, the relative dielectric constant (εr) at room temperature exhibits a negligible degradation as the film thickness decreases to 50 nm, suggesting that εr of (001)-oriented CaBi4Ti4O15 is less sensitive to the residual strain. The capacitance density increases monotonously with decreasing film thickness, reaching a value of 4.5 µF/cm(2) for a 50-nm-thick nanofilm, and is stable against temperature changes from room temperature to 400 °C irrespective of film thickness. This behaviour differs from that of the widely investigated perovskite-structured dielectrics. These results show that (001)-oriented CaBi4Ti4O15 films derived using Ca2Nb3O10(-) nanosheets as seed layers can be made candidates for high-temperature capacitor applications by a small change in the dielectric properties against film thickness and temperature variations.

6.
Pediatr Dermatol ; 30(3): e30-1, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22304420

RESUMO

Dyshidrotic eczema is one of the rare cutaneous adverse effects of intravenous immunoglobulin therapy, usually seen in adults. We herein report the first pediatric case of severe dyshidrotic eczema occurring after intravenous immunoglobulin therapy for Kawasaki syndrome.


Assuntos
Eczema Disidrótico/induzido quimicamente , Eczema Disidrótico/imunologia , Imunoglobulinas Intravenosas/efeitos adversos , Fatores Imunológicos/efeitos adversos , Síndrome de Linfonodos Mucocutâneos/imunologia , Síndrome de Linfonodos Mucocutâneos/terapia , Índice de Gravidade de Doença , Pré-Escolar , Humanos , Imunoglobulinas Intravenosas/administração & dosagem , Fatores Imunológicos/administração & dosagem , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...