Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 511(2): 330-335, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30791982

RESUMO

Irritant contact dermatitis (ICD) is one of the most common inflammatory skin diseases caused by exposure to chemical irritants. Since chemical irritants primarily damage keratinocytes, these cells play a pivotal role in ICD. One of the phosphoinositide-metabolizing enzymes, phospholipase C (PLC) δ1, is abundantly expressed in keratinocytes. However, the role of PLCδ1 in ICD remains to be clarified. Here, we found that croton oil (CrO)-induced ear swelling, a feature of ICD, was attenuated in keratinocyte-specific PLCδ1 knockout mice (PLCδ1 cKO mice). Dendritic epidermal T cells (DETCs), which have a protective role against ICD, were activated in the epidermis of the PLCδ1 cKO mice. In addition, the skin of CrO-treated PLCδ1 cKO mice showed increased infiltration of Gr1+CD11b+ myeloid cells. Of note, elimination of Gr1+CD11b+ myeloid cells restored CrO-induced ear swelling in PLCδ1 cKO mice to a similar level as that in control mice. Taken together, our results strongly suggest that epidermal loss of PLCδ1 protects mice from ICD through induction of Gr1+CD11b+ myeloid cells and activation of DETCs.


Assuntos
Dermatite de Contato/genética , Fosfolipase C delta/genética , Animais , Dermatite de Contato/imunologia , Modelos Animais de Doenças , Epiderme/imunologia , Epiderme/metabolismo , Masculino , Camundongos Knockout , Células Mieloides/imunologia , Fosfolipase C delta/imunologia , Linfócitos T/imunologia
2.
Cell Death Differ ; 24(6): 1079-1090, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28430185

RESUMO

Keratinocytes undergo a unique type of programmed cell death known as cornification, which leads to the formation of the stratum corneum (SC), the main physical barrier of the epidermis. A defective epidermal barrier is a hallmark of the two most common inflammatory skin disorders, psoriasis, and atopic dermatitis. However, the detailed molecular mechanisms of skin barrier formation are not yet fully understood. Here, we showed that downregulation of phospholipase C (PLC) δ1, a Ca2+-mobilizing and phosphoinositide-metabolizing enzyme abundantly expressed in the epidermis, impairs the barrier functions of the SC. PLCδ1 downregulation also impairs localization of tight junction proteins. Loss of PLCδ1 leads to a decrease in intracellular Ca2+ concentrations and nuclear factor of activated T cells activity, along with hyperactivation of p38 mitogen-activated protein kinase (MAPK) and inactivation of RhoA. Treatment with a p38 MAPK inhibitor reverses the barrier defects caused by PLCδ1 downregulation. Interestingly, this treatment also attenuates psoriasis-like skin inflammation in imiquimod-treated mice. These findings demonstrate that PLCδ1 is essential for epidermal barrier integrity. This study also suggests a possible link between PLCδ1 downregulation, p38 MAPK hyperactivation, and barrier defects in psoriasis-like skin inflammation.


Assuntos
Cálcio/metabolismo , Queratinócitos/enzimologia , Fosfolipase C delta/metabolismo , Transdução de Sinais , Pele/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Diferenciação Celular , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação , Queratinócitos/metabolismo , Queratinócitos/fisiologia , Camundongos , Fosfolipase C delta/genética , Psoríase/enzimologia , Psoríase/metabolismo , Psoríase/fisiopatologia , Pele/metabolismo , Pele/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...