Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 360: 142347, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759802

RESUMO

Textile and cosmetic industries generate large amounts of dye effluents requiring treatment before discharge. This wastewater contains high levels of reactive dyes, low to none-biodegradable materials and chemical residues. Technically, dye wastewater is characterised by high chemical and biological oxygen demand. Biological, physical and pressure-driven membrane processes have been extensively used in textile wastewater treatment plants. However, these technologies are characterised by process complexity and are often costly. Also, process efficiency is not achieved in cost-effective biochemical and physical treatment processes. Membrane distillation (MD) emerged as a promising technology harnessing challenges faced by pressure-driven membrane processes. To ensure high cost-effectiveness, the MD can be operated by solar energy or low-grade waste heat. Herein, the MD purification of dye wastewater is comprehensively and yet concisely discussed. This involved research advancement in MD processes towards removal of dyes from industrial effluents. Also, challenges faced by this process with a specific focus on fouling are reviewed. Current literature mainly tested MD setups in the laboratory scale suggesting a deep need of further optimization of membrane and module designs in near future, especially for textile wastewater treatment. There is a need to deliver customized high-porosity hydrophobic membrane design with the appropriate thickness and module configuration to reduce concentration and temperature polarization (CP and TP). Also, energy loss should be minimized while increasing dye rejection and permeate flux. Although laboratory experiments remain pivotal in optimizing the MD process for treating dye wastewater, the nature of their time intensity poses a challenge. Given the multitude of parameters involved in MD process optimization, artificial intelligence (AI) methodologies present a promising avenue for assistance. Thus, AI-driven algorithms have the potential to enhance overall process efficiency, cutting down on time, fine-tuning parameters, and driving cost reductions. However, achieving an optimal balance between efficiency enhancements and financial outlays is a complex process. Finally, this paper suggests a research direction for the development of effective synthetic and natural dye removal from industrially discharged wastewater.


Assuntos
Corantes , Destilação , Membranas Artificiais , Indústria Têxtil , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Destilação/métodos , Corantes/química , Corantes/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Resíduos Industriais
2.
ACS Omega ; 8(32): 29225-29233, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37599988

RESUMO

Discarded polymeric or ceramic membranes are currently in need of appropriate and sustainable management. In the present study, the direct reuse of discarded ceramic membranes in membrane contactor (MC) systems for CO2 removal was investigated for the first time. The hydrophobic surface modification of the discarded ceramic membrane was done by using macromolecule additive coating. The influence of operational parameters (absorbent liquid flow rate (QL), feed gas flow rate (Qg), and different NaOH concentrations) of the MC on CO2 removal was investigated to prove the technical feasibility of reused ceramic membranes. The CO2 absorption flux was 7.9 × 10-4 mol/m2 s at optimal conditions of 2 M NaOH, QL (20 mL/min), and Qg (300 mL/min) with a removal efficiency of 98%, which lasted for 8 h. This study demonstrates a potential alternative for the reuse of discarded ceramic membranes and avoids their disposal in landfills. The proposed approach will also bring membrane technology into the circular economy and achieve sustainability goals by reducing the amount of waste from discarded ceramic membranes in the future and combating global warming by absorbing CO2.

3.
Membranes (Basel) ; 12(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35207082

RESUMO

Fouling tends to cause a significant increase in hydraulic resistance, decreased permeate flux, or increased transmembrane pressure (TMP) when a process is operated under constant TMP or constant flux conditions. To control membrane fouling and maintain sustainable operation, the concept of critical flux has been discussed by several researchers. Various fouling mechanisms, such as macromolecule adsorption, pore plugging, or cake build-up, as well as hydrodynamic conditions, for example aeration, can take place at the membrane surface. This study aimed to investigate the effects of mixed liquor suspended solid (MLSS) concentration and air bubble flow rate (ABFR) on the critical flux and fouling behavior, when treating refinery-produced wastewater. To determine the critical flux values, the experimental flux-steps were the following: (1) the filtration began with a 30 min step duration at a low flux (10 to 20 L/m2h); (2) at the end of this step (after 30 min), the permeate flux was increased, (3) this step was repeated until the TMP did not remain constant at the constant permeate flux, (4) the critical flux was then achieved. A critical flux model with an R2 of 0.9 was, therefore, derived, which indicates that the particle properties were regulated by the suspended solids. The increase of MLSS concentration, from 3 mg/L to 4.5 mg/L, resulted in a decrease of the permeate flux by 18%. Moreover, an increase in ABFR, from 1.2 mL/min to 2.4 mL/min, increased the permeate flux, but this decreased with a greater flow rate of aeration. To assess the stability and reversibility of fouling during critical flux (Jc) determination using a mixed matrix membrane, flux-step methods were utilized. A step height of 14.3 L/m2h and 30 min duration were arbitrarily chosen. The flux increased to 32.5 L/m2h with a slight increase of trans membrane pressure (TMP), while the rate of increase became significant at a higher flux of 143.6 L/m2h, due to fouling. Overall, this study proved that the response of MLSS concentration and aeration affected the membrane performance, based on the critical flux and fouling behavior.

4.
Bioresour Technol ; 134: 401-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23499494

RESUMO

When making biodiesel, slow separation of glycerol; the main by-product of the transesterification reaction, could lead to longer operating times, bigger equipment and larger amount of steel and consequently increased production cost. Therefore, acceleration of glycerol/biodiesel decantation could play an important role in the overall biodiesel refinery process. In this work, NaCl-assisted gravitational settling was considered as an economizing strategy. The results obtained indicated that the addition of conventional NaCl salt decreased the glycerol settling time significantly up to more than five times. However, NaCl inclusion rates of more than 3g to the mixture (i.e. 5 and 10 g) resulted in significantly less methyl ester purity due to the occurrence of miniemulsion phenomenon. Overall, addition of 1g NaCl/100 ml glycerol-biodiesel mixture was found as optimal by accelerating the decantation process by 100% while maintaining the methyl ester purity as high as the control (0 g NaCl).


Assuntos
Biocombustíveis/economia , Biotecnologia/economia , Biotecnologia/métodos , Glicerol/química , Gravitação , Cloreto de Sódio/farmacologia , Técnicas de Cultura Celular por Lotes , Ésteres/análise , Tensão Superficial/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...