Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(11): 16123-16137, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34647209

RESUMO

Modeling CO2 flux components is an important task in ecosystem analysis and terrestrial studies. Net ecosystem exchange (NEE), ecosystem respiration (R), and gross primary production (GPP) are three CO2 flux components. Despite the ecosystem land cover characteristics, climatic factors can make considerable impact on quantity and mechanism of these components. Nevertheless, such climatic factors are not available in most of the areas, especially in developing regions. Therefore, obtaining the models that can exempt using locally recorded variables would be of great importance. A modeling study was carried out here to simulate CO2 flux components using soft computing-based random forest (RF) model in both local and external (spatial) scales, assessed by k-fold validation procedure. Data from 11 sites located in three forest ecosystems, e.g. deciduous broad leaf (DBF), evergreen needle leaf (ENF), and mixed forest (MF), were used to simulate the flux components. The obtained results showed that the temperature-related parameters (e.g., air and soil temperature, vapor pressure deficit) along with the net radiation play key role in determining the flux components in all studied ecosystems. It was confirmed that a chronologic scan of the available patterns is needed for a thorough assessment of the performance accuracy of the local models. The external models provided promising results when compared with the locally trained models. This is a very great step forward in estimating CO2 flux components under data scarcity conditions.


Assuntos
Dióxido de Carbono , Ecossistema , Carbono , Dióxido de Carbono/análise , Estações do Ano , Solo , Temperatura
2.
PLoS One ; 16(5): e0251510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34043648

RESUMO

Groundwater is one of the most important freshwater resources, especially in arid and semi-arid regions where the annual amounts of precipitation are small with frequent drought durations. Information on qualitative parameters of these valuable resources is very crucial as it might affect its applicability from agricultural, drinking, and industrial aspects. Although geo-statistics methods can provide insight about spatial distribution of quality factors, applications of advanced artificial intelligence (AI) models can contribute to produce more accurate results as robust alternative for such a complex geo-science problem. The present research investigates the capacity of several types of AI models for modeling four key water quality variables namely electrical conductivity (EC), sodium adsorption ratio (SAR), total dissolved solid (TDS) and Sulfate (SO4) using dataset obtained from 90 wells in Tabriz Plain, Iran; assessed by k-fold testing. Two different modeling scenarios were established to make simulations using other quality parameters and the geographical information. The obtained results confirmed the capabilities of the AI models for modeling the well groundwater quality variables. Among all the applied AI models, the developed hybrid support vector machine-firefly algorithm (SVM-FFA) model achieved the best predictability performance for both investigated scenarios. The introduced computer aid methodology provided a reliable technology for groundwater monitoring and assessment.


Assuntos
Inteligência Artificial , Simulação por Computador , Água Subterrânea/análise , Modelos Químicos , Qualidade da Água
3.
Environ Sci Pollut Res Int ; 27(22): 28183-28197, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32415439

RESUMO

Simulation of groundwater quality is important for managing water resources and mitigating water shortages, especially in arid and semiarid areas. Geostatistical models have been used for spatial prediction and interpolation of groundwater parameters. Recently, hybrid intelligent models have been employed for the simulation of dynamic systems. In this study, hybrid intelligent models, based on a neuro-fuzzy system integrated with fuzzy c-means data clustering (FCM) and grid partition (GP) models as well as artificial neural networks integrated with particle swarm optimization algorithm, were used to predict the spatial distribution of chlorine (Cl), electrical conductivity (EC), and sodium absorption ratio (SAR) parameters of groundwater. Results of the hybrid models were compared with geostatistical methods, including kriging, inverse distance weighting (IDW), and radial basis function (RBF). The latitude and longitude values of observation wells and qualitative parameters in three states of maximum, average, and minimum were introduced as input and output to the models, respectively. To evaluate the models, the root mean squared error (RMSE), the mean absolute error (MAE), and CC statistical criteria were used. Results showed that in the hybrid models, NF-GP with the lowest RMSE and MAE and highest CC was the most suitable model for the prediction of water quality parameters. The RMSE, MAE, and CC values were 107.175 (mg/L), 79.804 (mg/L), and 0.924 in the average state for Cl; were 518.544 (µmho/cm), 444.152 (µmho/cm), and 0.882 for electrical conductivity; and were 1.596, 1.350, and 0.582 for sodium absorption ratio, respectively. Among the geostatistical models, the kriging was found more accurate. Using the coordinates of wells will eventually allow the NF-GP to be used for more sampling and replace the visual techniques that require more time, cost, and facilities.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Análise Espacial , Qualidade da Água , Poços de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...