Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Elife ; 122024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904987

RESUMO

Numerous roles for the Alk receptor tyrosine kinase have been described in Drosophila, including functions in the central nervous system (CNS), however the molecular details are poorly understood. To gain mechanistic insight, we employed Targeted DamID (TaDa) transcriptional profiling to identify targets of Alk signaling in the larval CNS. TaDa was employed in larval CNS tissues, while genetically manipulating Alk signaling output. The resulting TaDa data were analyzed together with larval CNS scRNA-seq datasets performed under similar conditions, identifying a role for Alk in the transcriptional regulation of neuroendocrine gene expression. Further integration with bulk and scRNA-seq datasets from larval brains in which Alk signaling was manipulated identified a previously uncharacterized Drosophila neuropeptide precursor encoded by CG4577 as an Alk signaling transcriptional target. CG4577, which we named Sparkly (Spar), is expressed in a subset of Alk-positive neuroendocrine cells in the developing larval CNS, including circadian clock neurons. In agreement with our TaDa analysis, overexpression of the Drosophila Alk ligand Jeb resulted in increased levels of Spar protein in the larval CNS. We show that Spar protein is expressed in circadian (clock) neurons, and flies lacking Spar exhibit defects in sleep and circadian activity control. In summary, we report a novel activity regulating neuropeptide precursor gene that is regulated by Alk signaling in the Drosophila CNS.


Assuntos
Quinase do Linfoma Anaplásico , Sistema Nervoso Central , Proteínas de Drosophila , Animais , Sistema Nervoso Central/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Quinase do Linfoma Anaplásico/metabolismo , Quinase do Linfoma Anaplásico/genética , Larva/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Transdução de Sinais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Drosophila/genética , Drosophila/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica
2.
Epigenetics ; 19(1): 2337142, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38583183

RESUMO

Deregulation of ten-eleven Translocation protein 1 (TET1) is commonly reported to induce imbalances in gene expression and subsequently to colorectal cancer development (CRC). On the other hand, vitamin C (VitC) improves the prognosis of colorectal cancer by reprogramming the cancer epigenome and limiting chemotherapeutic drug resistance events. In this study, we aimed to characterize TET1-specific subcellular compartments and evaluate the effect of VitC on TET1 compartmentalization in colonic tumour cells. We demonstrated that TET1 is concentrated in coarse nuclear bodies (NB) and 5-hydroxymethylcytosine (5hmC) in foci in colorectal cancer cells (HCT116, Caco-2, and HT-29). To our knowledge, this is the first report of a novel intracellular localization profile of TET1 and its demethylation marker, 5hmC, in CRC cells. Interestingly, we found that TET1-NBs frequently interacted with Cajal bodies, but not with promyelocytic leukaemia (PML) bodies. In addition, we report that VitC treatment of HCT116 cells induces 5hmC foci biogenesis and triggers 5hmC marks to form active complexes with nuclear body components, including both Cajal and PML proteins. Our data highlight novel NB-concentrating TET1 in CRC cells and demonstrate that VitC modulates TET1-NBs' interactions with other nuclear structures. These findings reveal novel TET1-dependent cellular functions and potentially provide new insights for CRC management.


Assuntos
Ácido Ascórbico , Neoplasias Colorretais , Humanos , Células CACO-2 , Ácido Ascórbico/farmacologia , Corpos Nucleares da Leucemia Promielocítica , Metilação de DNA , Corpos Nucleares , Vitaminas , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
3.
iScience ; 27(4): 109538, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38585663

RESUMO

Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell disorder resulting from a balanced translocation leading to BCR::ABL1 oncogene with increased tyrosine kinase activity. Despite the advancements in the development of tyrosine kinase inhibitors (TKIs), the T315I gatekeeper point mutation in the BCR::ABL1 gene remains a challenge. We have previously reported in a Drosophila CML model an increased hemocyte count and disruption in sessile hemocyte patterns upon expression of BCR::ABL1p210 and BCR::ABL1T315I in the hemolymph. In this study, we performed RNA sequencing to determine if there is a distinct gene expression that distinguishes BCR::ABL1p210 and BCR::ABL1T315I. We identified six genes that were consistently upregulated in the fly CML model and validated in adult and pediatric CML patients and in a mouse cell line expressing BCR::ABL1T315I. This study provides a comprehensive analysis of gene signatures in BCR::ABL1p210 and BCR::ABL1T315I, laying the groundwork for targeted investigations into the role of these genes in CML pathogenesis.

4.
Epigenetics ; 18(1): 2192375, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36989121

RESUMO

Ten-Eleven Translocation (TET) proteins have recently come to light as important epigenetic regulators conserved in multicellular organisms. TET knockdown studies in rodents have highlighted the critical role of these proteins for proper brain development and function. Mutations in mammalian mTET proteins and mTET2 specifically are frequent and deregulated in leukaemia and glioma respectively. Accordingly, we examined the role of mTET2 in tumorigenesis in larval haemocytes and adult heads in Drosophila melanogaster. Our findings showed that expression of mutant and wild type mTET2 resulted in general phenotypic defects in adult flies and accumulation of abdominal melanotic masses. Notably, flies with mTET2-R43G mutation at the N-terminus of mTET2 exhibited locomotor and circadian behavioural deficits, as well as reduced lifespan. Flies with mTET2-R1261C mutation in the catalytic domain, a common mutation in acute myeloid leukaemia (AML), displayed alterations affecting haemocyte haemostasis. Using transcriptomic approach, we identified upregulated immune genes in fly heads that were not exclusive to TET2 mutants but also found in wild type mTET2 flies. Furthermore, inhibiting expression of genes that were found to be deregulated in mTET2 mutants, such as those involved in immune pathways, autophagy, and transcriptional regulation, led to a rescue in fly survival, behaviour, and hemocyte number. This study identifies the transcriptomic profile of wild type mTET2 versus mTET2 mutants (catalytic versus non-catalytic) with indications of TET2 role in normal central nervous system (CNS) function and innate immunity.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Ritmo Circadiano/genética , Metilação de DNA , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Perfilação da Expressão Gênica , Mamíferos/genética , Mutação , Transcriptoma , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo
5.
World J Gastroenterol ; 28(40): 5845-5864, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36353202

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) constitutes a substantial risk factor for colorectal cancer. Connexin 43 (Cx43) is a protein that forms gap junction (GJ) complexes involved in intercellular communication, and its expression is altered under pathological conditions, such as IBD and cancer. Recent studies have implicated epigenetic processes modulating DNA methylation in the pathogenesis of diverse inflammatory and malignant diseases. The ten-eleven translocation-2 (TET-2) enzyme catalyzes the demethylation, hence, regulating the activity of various cancer-promoting and tumor-suppressor genes. AIM: To investigate Cx43 and TET-2 expression levels and presence of 5-hydroxymethylcytosine (5-hmC) marks under inflammatory conditions both in vitro and in vivo. METHODS: TET-2 expression was evaluated in parental HT-29 cells and in HT-29 cells expressing low or high levels of Cx43, a putative tumor-suppressor gene whose expression varies in IBD and colorectal cancer, and which has been implicated in the inflammatory process and in tumor onset. The dextran sulfate sodium-induced colitis model was reproduced in BALB/c mice to evaluate the expression of TET-2 and Cx43 under inflammatory conditions in vivo. In addition, archived colon tissue sections from normal, IBD (ulcerative colitis), and sporadic colon adenocarcinoma patients were obtained and evaluated for the expression of TET-2 and Cx43. Expression levels were reported at the transcriptional level by quantitative real-time polymerase chain reaction, and at the translational level by Western blotting and immunofluorescence. RESULTS: Under inflammatory conditions, Cx43 and TET-2 expression levels increased compared to non-inflammatory conditions. TET-2 upregulation was more pronounced in Cx43-deficient cells. Moreover, colon tissue sections from normal, ulcerative colitis, and sporadic colon adenocarcinoma patients corroborated that Cx43 expression increased in IBD and decreased in adenocarcinoma, compared to tissues from non-IBD subjects. However, TET-2 expression and 5-hmC mark levels decreased in samples from patients with ulcerative colitis or cancer. Cx43 and TET-2 expression levels were also investigated in an experimental colitis mouse model. Interestingly, mice exposed to carbenoxolone (CBX), a GJ inhibitor, had upregulated TET-2 levels. Collectively, these results show that TET-2 levels and activity increased under inflammatory conditions, in cells downregulating gap junctional protein Cx43, and in colon tissues from mice exposed to CBX. CONCLUSION: These results suggest that TET-2 expression levels, as well as Cx43 expression levels, are modulated in models of intestinal inflammation. We hypothesize that TET-2 may demethylate genes involved in inflammation and tumorigenesis, such as Cx43, potentially contributing to intestinal inflammation and associated carcinogenesis.


Assuntos
Adenocarcinoma , Colite Ulcerativa , Colite , Neoplasias do Colo , Dioxigenases , Doenças Inflamatórias Intestinais , Animais , Camundongos , Adenocarcinoma/patologia , Carcinogênese/patologia , Colite/induzido quimicamente , Colite Ulcerativa/patologia , Colo/patologia , Neoplasias do Colo/patologia , Conexina 43/genética , Conexina 43/metabolismo , Sulfato de Dextrana/toxicidade , Dioxigenases/metabolismo , Modelos Animais de Doenças , Inflamação/patologia , Doenças Inflamatórias Intestinais/patologia
9.
eNeuro ; 9(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35396259

RESUMO

Ten-eleven translocation (TET) proteins are crucial epigenetic regulators highly conserved in multicellular organisms. TETs' enzymatic function in demethylating 5-methyl cytosine in DNA is required for proper development and TETs are frequently mutated in cancer. Recently, Drosophila melanogaster Tet (dTet) was shown to be highly expressed in developing fly brains and discovered to play an important role in brain and muscle development as well as fly behavior. Furthermore, dTet was shown to have different substrate specificity compared with mammals. However, the exact role dTet plays in glial cells and how ectopic TET expression in glial cells contributes to tumorigenesis and glioma is still not clear. Here, we report a novel role for dTet specifically in glial cell organization and number. We show that loss of dTet affects the organization of a specific glia population in the optic lobe, the "optic chiasm" glia. Additionally, we find irregularities in axon patterns in the ventral nerve cord (VNC) both, in the midline and longitudinal axons. These morphologic glia and axonal defects were accompanied by locomotor defects in developing larvae escalating to immobility in adult flies. Furthermore, glia homeostasis was disturbed in dTet-deficient brains manifesting in gain of glial cell numbers and increased proliferation. Finally, we establish a Drosophila model to understand the impact of human TET3 in glia and find that ectopic expression of hTET3 in dTet-expressing cells causes glia expansion in larval brains and affects sleep/rest behavior and the circadian clock in adult flies.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Homeostase , Larva/metabolismo , Mamíferos/metabolismo , Neuroglia/metabolismo
10.
Mol Cell ; 81(23): 4876-4890.e7, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34739871

RESUMO

Histone H3.3 lysine-to-methionine substitutions K27M and K36M impair the deposition of opposing chromatin marks, H3K27me3/me2 and H3K36me3/me2. We show that these mutations induce hypotrophic and disorganized eyes in Drosophila eye primordia. Restriction of H3K27me3 spread in H3.3K27M and its redistribution in H3.3K36M result in transcriptional deregulation of PRC2-targeted eye development and of piRNA biogenesis genes, including krimp. Notably, both mutants promote redistribution of H3K36me2 away from repetitive regions into active genes, which associate with retrotransposon de-repression in eye discs. Aberrant expression of krimp represses LINE retrotransposons but does not contribute to the eye phenotype. Depletion of H3K36me2 methyltransferase ash1 in H3.3K27M, and of PRC2 component E(z) in H3.3K36M, restores the expression of eye developmental genes and normal eye growth, showing that redistribution of antagonistic marks contributes to K-to-M pathogenesis. Our results implicate a novel function for H3K36me2 and showcase convergent downstream effects of oncohistones that target opposing epigenetic marks.


Assuntos
Cromatina/química , Elementos de DNA Transponíveis , Histonas/química , Histonas/genética , Discos Imaginais/metabolismo , Mutação , Animais , Animais Geneticamente Modificados , Centrômero/ultraestrutura , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Metilação de DNA , Drosophila melanogaster , Epigênese Genética , Humanos , Lisina/química , Metionina/química , Camundongos , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Fenótipo , RNA-Seq
11.
Viruses ; 13(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210024

RESUMO

Infection with EBV has been associated with various inflammatory disorders including inflammatory bowel diseases (IBD). Contribution of this virus to intestinal disease processes has not been assessed. We previously detected that EBV DNA triggers proinflammatory responses via the activation of endosomal Toll-like receptor (TLR) signaling. Hence, to examine the colitogenic potential of EBV DNA, we used the dextran sodium sulfate (DSS) mouse colitis model. C57BL/6J mice received either DSS-containing or regular drinking water. Mice were then administered EBV DNA by rectal gavage. Administration of EBV DNA to the DSS-fed mice aggravated colonic disease activity as well as increased the damage to the colon histologic architecture. Moreover, we observed enhanced expression of IL-17A, IFNγ and TNFα in colon tissues from the colitis mice (DSS-treated) given the EBV DNA compared to the other groups. This group also had a marked decrease in expression of the CTLA4 immunoregulatory marker. On the other hand, we observed enhanced expression of endosomal TLRs in colon tissues from the EBV DNA-treated colitis mice. These findings indicate that EBV DNA exacerbates proinflammatory responses in colitis. The ubiquity of EBV in the population indicates that possible similar responses may be of pertinence in a relevant proportion of IBD patients.


Assuntos
DNA Viral/genética , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidade , Doenças Inflamatórias Intestinais/virologia , Animais , Colo/imunologia , Colo/patologia , Colo/virologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Herpesvirus Humano 4/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo
12.
Front Immunol ; 12: 586930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828545

RESUMO

The Epstein-Barr virus (EBV) commonly infects humans and is highly associated with different types of cancers and autoimmune diseases. EBV has also been detected in inflamed gastrointestinal mucosa of patients suffering from prolonged inflammation of the digestive tract such as inflammatory bowel disease (IBD) with no clear role identified yet for EBV in the pathology of such diseases. Since we have previously reported immune-stimulating capabilities of EBV DNA in various models, in this study we investigated whether EBV DNA may play a role in exacerbating intestinal inflammation through innate immune and regeneration responses using the Drosophila melanogaster model. We have generated inflamed gastrointestinal tracts in adult fruit flies through the administration of dextran sodium sulfate (DSS), a sulfated polysaccharide that causes human ulcerative colitis- like pathologies due to its toxicity to intestinal cells. Intestinal damage induced by inflammation recruited plasmatocytes to the ileum in fly hindguts. EBV DNA aggravated inflammation by enhancing the immune deficiency (IMD) pathway as well as further increasing the cellular inflammatory responses manifested upon the administration of DSS. The study at hand proposes a possible immunostimulatory role of the viral DNA exerted specifically in the fly hindgut hence further developing our understanding of immune responses mounted against EBV DNA in the latter intestinal segment of the D. melanogaster gut. These findings suggest that EBV DNA may perpetuate proinflammatory processes initiated in an inflamed digestive system. Our findings indicate that D. melanogaster can serve as a model to further understand EBV-associated gastroinflammatory pathologies. Further studies employing mammalian models may validate the immunogenicity of EBV DNA in an IBD context and its role in exacerbating the disease through inflammatory mediators.


Assuntos
DNA Viral , Suscetibilidade a Doenças , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4 , Doenças Inflamatórias Intestinais/etiologia , Animais , Biomarcadores , Contagem de Células , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Drosophila melanogaster , Hemócitos , Herpesvirus Humano 4/genética , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Regeneração , Células-Tronco/imunologia , Células-Tronco/metabolismo
13.
Cells ; 9(7)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708107

RESUMO

Leukemia involves different types of blood cancers, which lead to significant mortality and morbidity. Murine models of leukemia have been instrumental in understanding the biology of the disease and identifying therapeutics. However, such models are time consuming and expensive in high throughput genetic and drug screening. Drosophilamelanogaster has emerged as an invaluable in vivo model for studying different diseases, including cancer. Fruit flies possess several hematopoietic processes and compartments that are in close resemblance to their mammalian counterparts. A number of studies succeeded in characterizing the fly's response upon the expression of human leukemogenic proteins in hematopoietic and non-hematopoietic tissues. Moreover, some of these studies showed that these models are amenable to genetic screening. However, none were reported to be tested for drug screening. In this review, we describe the Drosophila hematopoietic system, briefly focusing on leukemic diseases in which fruit flies have been used. We discuss myeloid and lymphoid leukemia fruit fly models and we further highlight their roles for future therapeutic screening. In conclusion, fruit fly leukemia models constitute an interesting area which could speed up the process of integrating new therapeutics when complemented with mammalian models.


Assuntos
Drosophila melanogaster/fisiologia , Leucemia/patologia , Animais , Modelos Animais de Doenças , Drosophila melanogaster/genética , Descoberta de Drogas , Hematopoese , Humanos , Oncogenes
14.
Epigenetics ; 15(11): 1139-1150, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32419604

RESUMO

Ten-eleven Translocation (TET) proteins have emerged as a family of epigenetic regulators that are important during development and have been implicated in various types of cancers. TET is a highly conserved protein that has orthologues in almost all multicellular organisms. Here, we review recent literature on the novel substrate specificity of this family of DNA 5-methylcytosine demethylases on DNA 6-methyladenine and RNA 5-methylcytosine that were first identified in the invertebrate model Drosophila. We focus on the biological role of these novel epigenetic marks in the fruit fly and mammals and highlight TET proteins' critical function during development specifically in brain development.


Assuntos
Metilação de DNA , Proteínas de Drosophila/metabolismo , Epigênese Genética , Oxigenases de Função Mista/metabolismo , Animais , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética
15.
Haematologica ; 105(2): 387-397, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31101753

RESUMO

Chronic myeloid leukemia is caused by a balanced chromosomal translocation resulting in the formation of BCR-ABL1 fusion gene encoding a constitutively active BCR-ABL1 tyrosine kinase, which activates multiple signal transduction pathways leading to malignant transformation. Standard treatment of chronic myeloid leukemia is based on tyrosine kinase inhibitors; however, some mutations have proven elusive particularly the T315I mutation. Drosophila melanogaster is an established in vivo model for human diseases including cancer. The targeted expression of chimeric human/fly and full human BCR-ABL1 in Drosophila eyes has been shown to result in detrimental effects. In this study, we expressed human BCR-ABL1p210 and the resistant BCR-ABL1p210/T315I fusion oncogenes in Drosophila eyes. Expression of BCR-ABL1p210/T315I resulted in a severe distortion of the ommatidial architecture of adult eyes with a more prominent rough eye phenotype compared to milder phenotypes in BCR-ABL1p210 reflecting a stronger oncogenic potential of the mutant. We then assessed the efficacy of the currently used tyrosine kinase inhibitors in BCR-ABL1p210 and BCR-ABL1p210/T315I expressing flies. Treatment of BCR-ABL1p210 expressing flies with potent kinase inhibitors (dasatinib and ponatinib) resulted in the rescue of ommatidial loss and the restoration of normal development. Taken together, we provide a chronic myeloid leukemia tailored BCR-ABL1p210 and BCR-ABL1p210/T315I fly model which can be used to test new compounds with improved therapeutic indices.


Assuntos
Drosophila , Leucemia Mielogênica Crônica BCR-ABL Positiva , Animais , Drosophila melanogaster/genética , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
16.
Front Cell Neurosci ; 13: 252, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31213988

RESUMO

Ten-Eleven Translocation (TET) proteins are important epigenetic regulators that play a key role in development and are frequently deregulated in cancer. Drosophila melanogaster has a single homologous Tet gene (dTet) that is highly expressed in the central nervous system during development. Here, we examined the expression pattern of dTet in the third instar larval CNS and discovered its presence in a specific set of glia cells: midline glia (MG). Moreover, dTet knockdown resulted in significant lethality, locomotor dysfunction, and alterations in axon patterning in the larval ventral nerve cord. Molecular analyses on dTet knockdown larvae showed a downregulation in genes involved in axon guidance and reduced expression of the axon guidance cue Slit. Our findings point toward a potential role for dTet in midline glial function, specifically the regulation of axon patterning during neurodevelopment.

17.
Nat Commun ; 10(1): 2891, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253791

RESUMO

Our ability to manage acute myeloid leukemia (AML) is limited by our incomplete understanding of the epigenetic disruption central to leukemogenesis, including improper histone methylation. Here we examine 16 histone H3 genes in 434 primary AML samples and identify Q69H, A26P, R2Q, R8H and K27M/I mutations (1.6%), with higher incidence in secondary AML (9%). These mutations occur in pre-leukemic hematopoietic stem cells (HSCs) and exist in the major leukemic clones in patients. They increase the frequency of functional HSCs, alter differentiation, and amplify leukemic aggressiveness. These effects are dependent on the specific mutation. H3K27 mutation increases the expression of genes involved in erythrocyte and myeloid differentiation with altered H3K27 tri-methylation and K27 acetylation. The functional impact of histone mutations is independent of RUNX1 mutation, although they at times co-occur. This study establishes that H3 mutations are drivers of human pre-cancerous stem cell expansion and important early events in leukemogenesis.


Assuntos
Epigenômica , Regulação Leucêmica da Expressão Gênica/fisiologia , Histonas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Animais , Animais Geneticamente Modificados , Antineoplásicos/farmacologia , Sequência de Bases , Células da Medula Óssea , Diferenciação Celular , Transformação Celular Neoplásica , DNA/genética , Drosophila melanogaster/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Mutação , Neoplasias Experimentais
18.
Neuro Oncol ; 21(5): 628-639, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30715493

RESUMO

BACKGROUND: Recurrent specific mutations in evolutionarily conserved histone 3 (H3) variants drive pediatric high-grade gliomas (HGGs), but little is known about their downstream effects. The aim of this study was to identify genes involved in the detrimental effects of mutant H3.3-K27M, the main genetic driver in lethal midline HGG, in a transgenic Drosophila model. METHODS: Mutant and wild-type histone H3.3-expressing flies were generated using a φC31-based integration system. Genetic modifier screens were performed by crossing H3.3-K27M expressing driver strains and 194 fly lines expressing short hairpin RNA targeting genes selected based on their potential role in the detrimental effects of mutant H3. Expression of the human orthologues of genes with functional relevance in the fly model was validated in H3-K27M mutant HGG. RESULTS: Ubiquitous and midline glia-specific expression of H3.3-K27M but not wild-type H3.3 caused pupal lethality, morphological alterations, and decreased H3K27me3. Knockdown of 17 candidate genes shifted the lethal phenotype to later stages of development. These included histone modifying and chromatin remodeling genes as well as genes regulating cell differentiation and proliferation. Notably, several of these genes were overexpressed in mutant H3-K27M mutated HGG. CONCLUSIONS: Rapid screening, identification, and validation of relevant targets in "oncohistone" mediated pathogenesis have proven a challenge and a barrier to providing novel therapies. Our results provide further evidence on the role of chromatin modifiers in the genesis of H3.3-K27M. Notably, they validate Drosophila as a model system for rapid identification of relevant genes functionally involved in the detrimental effects of H3.3-K27M mutagenesis.


Assuntos
Biomarcadores Tumorais/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Glioma/genética , Histonas/genética , Mutação , RNA Interferente Pequeno/genética , Animais , Drosophila melanogaster/metabolismo , Glioma/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Ensaios de Triagem em Larga Escala , Humanos
19.
Front Microbiol ; 9: 1268, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29942298

RESUMO

Infection with the Epstein-Barr virus (EBV) is associated with several malignancies and autoimmune diseases in humans. The following EBV infection and establishment of latency, recurrences frequently occur resulting in potential viral DNA shedding, which may then trigger the activation of immune pathways. We have previously demonstrated that levels of the pro-inflammatory cytokine IL-17, which is associated with several autoimmune diseases, are increased in response to EBV DNA injection in mice. Whether other pro-inflammatory pathways are induced in EBV DNA pathobiology remains to be investigated. The complexity of mammalian immune systems presents a challenge to studying differential activities of their intricate immune pathways in response to a particular immune stimulus. In this study, we used Drosophila melanogaster to identify innate humoral and cellular immune pathways that are activated in response to EBV DNA. Injection of wild-type adult flies with EBV DNA induced the immune deficiency (IMD) pathway resulting in enhanced expression of the antimicrobial peptide diptericin. Furthermore, EBV DNA increased the number of hemocytes in flies. Conditional silencing of the IMD pathway decreased diptericin expression in addition to curbing of hemocyte proliferation in response to challenge with EBV DNA. Comparatively, upon injecting mice with EBV DNA, we detected enhanced expression of tumor necrosis factor-α (TNFα); this enhancement is rather comparable to IMD pathway activation in flies. This study hence indicates that D. melanogaster could possibly be utilized to identify immune mediators that may also play a role in the response to EBV DNA in higher systems.

20.
Retrovirology ; 15(1): 33, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29665857

RESUMO

BACKGROUND: Adult T-cell leukemia/lymphoma (ATL) is an aggressive malignancy secondary to chronic human T-cell lymphotropic virus 1 infection, triggered by the virally encoded oncoprotein Tax. The transforming activity and subcellular localization of Tax is strongly influenced by posttranslational modifications, among which ubiquitylation and SUMOylation have been identified as key regulators of the nuclear/cytoplasmic shuttling of Tax, as well as its ability to activate NF-κB signaling. RESULTS: Adding to the complex posttranslational modification landscape of Tax, we here demonstrate that Tax also interacts with the ubiquitin-related modifier 1 (Urm1). Conjugation of Urm1 to Tax results in a redistribution of Tax to the cytoplasm and major increase in the transcription of the NF-ĸB targets Rantes and interleukin-6. Utilizing a tax-transgenic Drosophila model, we show that the Urm1-dependent subcellular targeting of Tax is evolutionary conserved, and that the presence of Urm1 is strongly correlated with the transcriptional output of Diptericin, an antimicrobial peptide and established downstream target of NF-κB in flies. CONCLUSIONS: These data put forward Urm1 as a novel Tax modifier that modulates its oncogenic activity and hence represents a potential novel target for developing new strategies for treating ATL.


Assuntos
Produtos do Gene tax/metabolismo , Infecções por HTLV-I/metabolismo , Infecções por HTLV-I/virologia , Interações Hospedeiro-Patógeno , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Ubiquitinas/metabolismo , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Leucemia-Linfoma de Células T do Adulto/etiologia , Leucemia-Linfoma de Células T do Adulto/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Sumoilação , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...