Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37581286

RESUMO

Organic electrode materials are appealing candidates for a wide range of applications, including heterogeneous electrocatalysis and electrochemical energy storage. However, a narrow understanding of the structure-property relationships in these materials hinders the full realization of their potential. Herein, we investigate a family of insoluble perylenediimide (PDI) polymers to interrogate how backbone flexibility affects their thermodynamic and kinetic redox properties. We verify that the polymers generally access the highest percentage of redox-active groups with K+ ions (vs Na+ and Li+) due to its small solvation shell/energy and favorable soft-soft interactions with reduced PDI species. Through cyclic voltammetry, we show that increasing the polymer flexibility does not minimize barriers to ion-insertion processes but rather increases the level of diffusion-limited processes. Further, we propose that the condensation of imides to iminoimides can truncate the imide polymer chain growth for certain diamine monomers, leading to greater polymer solubilization and reduced cycling stability. Together, our results provide insight into how polymer flexibility, ion-electrode interactions, and polymerization side reactions dictate the redox properties of PDI polymers, paving the way for the development of next-generation organic electrode materials.

2.
RSC Adv ; 9(55): 32121-32129, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35530796

RESUMO

Nanoparticles have been attracting attention because they can significantly improve the performance of membranes when added in small amounts. In this study, the effect of polyamide membranes incorporating hydrophilic nitrogen/phosphorus-doped carbon dots (NP-CDs) to enhance water vapor/N2 separation has been investigated. NP-CD nanoparticles with many hydrophilic functional groups are synthesized from chitosan by a one-pot green method and introduced to the surface of the polysulfone (PSf) substrates by interfacial polymerization reaction. The mean particle diameter of NP-CDs, estimated from transmission electron microscopy images, is 2.6 nm. By adding NP-CDs (0-1.5 wt%) to the polyamide layer, the contact angles of the membranes dramatically decreased from 65° (PSf) to <9° (thin film nanocomposite (TFN)), which means that the TFN membranes become significantly hydrophilic. From the water vapor separation results, the addition of NP-CDs in the polyamide layer improves the water vapor permeance from 1511 (thin film composite (TFC) without nanoparticles) to 2448 GPU (TFN with 1.0 wt% NP-CD loading, CD-TFN(1.0)) and the water vapor/N2 selectivity from 73 (TFC) to 854 (CD-TFN(1.0)). To our knowledge, this is the first study of highly functionalized NP-CD-incorporated polyamide membranes to enhance water vapor separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...