Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 158: 77-87, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31378364

RESUMO

Pyrethroid-resistance in onion thrips, Thrips tabaci, has been reported in many countries including Japan. Identifying factors of the resistance is important to correctly monitoring the resistance in field populations. To identify pyrethroid-resistance related genes in T. tabaci in Japan, we performed RNA-Seq analysis of seven T. tabaci strains including two pyrethroid-resistant and five pyrethroid-susceptible strains. We identified a pair of single point mutations, T929I and K1774N, introducing two amino acid mutations, in the voltage-gated sodium channel gene, a pyrethroid target gene, in the two resistant strains. The K1774N is a newly identified mutation located in the fourth repeat domain of the sodium channel. Genotyping analysis of field-collected populations showed that most of the T. tabaci individuals in resistant populations carried the mutation pair, indicating that the mutation pair is closely associated with pyrethroid-resistance in Japan. Another resistance-related mutation, M918L, was also identified in part of the resistant populations. Most of the individuals with the mutation pair were arrhenotokous while all individuals with the M918L single mutation were thelytokous. The result of differentially expressed gene analysis revealed a small number of up-regulated detoxification genes in each resistant strain which might be involved in resistance to pyrethroid. However, no up-regulated detoxification genes common to the two resistant strains were detected. Our results indicate that the mutation pair in the sodium channel gene is the most important target for monitoring pyrethroid-resistance in T. tabaci, and that pyrethroid-resistant arrhenotokous individuals with the mutation pair are likely to be widely distributed in Japan.


Assuntos
Piretrinas/farmacologia , Tisanópteros/efeitos dos fármacos , Tisanópteros/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Japão , Mutação/genética , Mutação Puntual/genética , Tisanópteros/genética , Canais de Sódio Disparados por Voltagem/genética
2.
Springerplus ; 2: 637, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312748

RESUMO

An antipredator defence in the citrus red mite Panonychus citri, which does not produce protective webs, was examined experimentally. P. citri adult females lie down on citrus leaf surfaces with their dorsal setae (hair) directed in all upper directions. They seldom move in response to physical stimuli. Compared to normal lying females, both manipulated non-lying females and hair-removed females suffered higher predation by predatory mites. A predator approaching the body surface of a lying female inevitably created elasticity with a confronting seta, which eventually repelled the predator away from the female. These observations indicated that lying down with protective setae functions as an antipredator defence in P. citri females. This inflexible defence could also explain why the mite rarely runs away, even when it is consumed together with host plant leaves (via coincidental intraguild predation) by gigantic swallowtail caterpillars, against which protective setae are totally ineffective.

3.
Exp Appl Acarol ; 2012 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-22286142

RESUMO

Intraguild predation (IGP) is defined as the killing and eating of prey species by a predator that also can utilize the resources of the prey. It is mainly reported among carnivores that share common herbivorous prey. However, a large chewing herbivore could prey upon sedentary and/or micro herbivores in addition to utilizing a host plant. To investigate such coincidental IGP, we observed the behavioral responses of the polyphagous mite Tetranychus kanzawai Kishida (Acari: Tetranychidae) when its host plant Cayratia japonica (Thunb.) Gagnep. (Vitaceae) was attacked by hornworms, Theretra japonica Boisduval (Sphingidae) and T. oldenlandiae Fabricius (Sphingidae). We also examined an interaction between the oligophagous mite Panonychus citri McGregor (Acari: Tetranychidae) and caterpillars of the swallowtail Papilio xuthus L. (Papilionidae) that share citrus plants as their main food source. Although all T. kanzawai and some active stage P. citri tried to escape from the coincidental IGP, some were consumed together with eggs, quiescent mites, and host plant leaves, suggesting that coincidental IGP occurs on spider mites in the wild. Moreover, neither hornworms nor swallowtail caterpillars distinguished between spider mite-infested and uninfested leaves, suggesting that the mite-infested leaves do not discourage caterpillar feeding. The reasons that the mites have no effective defense against coincidental IGP other than escaping are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...