Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Cybern ; 47(4): 818-829, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28113878

RESUMO

In this paper, we advance graph classification to handle multi-graph learning for complicated objects, where each object is represented as a bag of graphs and the label is only available to each bag but not individual graphs. In addition, when training classifiers, users are only given a handful of positive bags and many unlabeled bags, and the learning objective is to train models to classify previously unseen graph bags with maximum accuracy. To achieve the goal, we propose a positive and unlabeled multi-graph learning (puMGL) framework to first select informative subgraphs to convert graphs into a feature space. To utilize unlabeled bags for learning, puMGL assigns a confidence weight to each bag and dynamically adjusts its weight value to select "reliable negative bags." A number of representative graphs, selected from positive bags and identified reliable negative graph bags, form a "margin graph pool" which serves as the base for deriving subgraph patterns, training graph classifiers, and further updating the bag weight values. A closed-loop iterative process helps discover optimal subgraphs from positive and unlabeled graph bags for learning. Experimental comparisons demonstrate the performance of puMGL for classifying real-world complicated objects.

2.
IEEE Trans Cybern ; 47(3): 744-758, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26978839

RESUMO

Multitask learning (MTL) is commonly used for jointly optimizing multiple learning tasks. To date, all existing MTL methods have been designed for tasks with feature-vector represented instances, but cannot be applied to structure data, such as graphs. More importantly, when carrying out MTL, existing methods mainly focus on exploring overall commonality or disparity between tasks for learning, but cannot explicitly capture task relationships in the feature space, so they are unable to answer important questions, such as what exactly is shared between tasks and what is the uniqueness of one task differing from others? In this paper, we formulate a new multitask graph learning problem, and propose a task sensitive feature exploration and learning algorithm for multitask graph classification. Because graphs do not have features available, we advocate a task sensitive feature exploration and learning paradigm to jointly discover discriminative subgraph features across different tasks. In addition, a feature learning process is carried out to categorize each subgraph feature into one of three categories: (1) common feature; (2) task auxiliary feature; and (3) task specific feature, indicating whether the feature is shared by all tasks, by a subset of tasks, or by only one specific task, respectively. The feature learning and the multiple task learning are iteratively optimized to form a multitask graph classification model with a global optimization goal. Experiments on real-world functional brain analysis and chemical compound categorization demonstrate the algorithm's performance. Results confirm that our method can be used to explicitly capture task correlations and uniqueness in the feature space, and explicitly answer what are shared between tasks and what is the uniqueness of a specific task.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA