Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 19(3): 447-74, 2014 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-24389195

RESUMO

AMPK is a serine/threonine kinase that is found in all eukaryotes and is ubiquitously expressed in all organ systems. Once activated, AMPK stimulates hepatic fatty acid oxidation and ketogenesis, inhibits cholesterol synthesis, lipogenesis, and triglyceride synthesis, inhibits adipocyte lipolysis and lipogenesis, stimulates skeletal muscle fatty acid oxidation and muscle glucose uptake, and modulates insulin secretion by the pancreas. Thus its importance in many critical cellular processes is well established. For cells it is critical that energy supply and demand are closely matched. AMPK is recognized as a critical integrator of this balance. It is known to be allosterically activated by an increased AMP:ATP ratio. Activation of the kinase switches on catabolic pathways while switching off anabolic ones. It also acts as a redox sensor in endothelial cells where oxidative stress can disturb NO signaling. Abnormal NO signaling leads to disturbed vasodilatory responses. By inhibiting the formation of reactive oxygen species in the endothelium, AMPK can optimize the redox balance in the vasculature. Here, we review the role of AMPK in the cell.


Assuntos
Adenilato Quinase/metabolismo , Técnicas Biossensoriais , Morte Celular , Divisão Celular , Ativação Enzimática , Mitocôndrias/enzimologia , Oxirredução , Estresse Oxidativo , Transdução de Sinais
2.
Front Biosci (Landmark Ed) ; 17(3): 1140-64, 2012 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-22201795

RESUMO

Diabetes is associated with major life-threatening complications such as a markedly increased risk of cardiovascular disease, even in the presence of rigid glycemic control. Indeed, nearly 75% of diabetic patients eventually die of cardiovascular disease or cardiovascular complications. A striking feature of the diabetic cardiovascular phenotype is the appearance of accelerated atherosclerosis, which resembles atherosclerosis that may be encountered in the non-diabetic individual, except that it is more extensive, aggressive, and occurs at an earlier age. Atherosclerosis (or atherosclerotic vascular disease; ASVD), is a pathological syndrome affecting arterial vessels characterized by narrowing of the vascular lumen secondary to intravascular buildup of fatty material such as cholesterol, aggregated cellular debris, and inflammatory change in the vascular endothelium. Seemingly distinct, these two well-defined disorders are nevertheless, intimately and intricately linked. In fact, these two pathologies appear to be linked by common signaling pathways and shared regulatory systems that appear to go awry in an as yet poorly understood manner. In recent years, a body of evidence has been growing that suggests that inflammation peculiar to the vascular system, occurs in the diabetic patient. This review aims to present the empirical underpinning of the hypothesis that inflammatory change in the vasculature might be the integrated mechanism that connects a diabetic phenotype with its attendant vascular complications.


Assuntos
Aterosclerose/complicações , Doenças Cardiovasculares/complicações , Complicações do Diabetes , Vasculite/complicações , Humanos , Mediadores da Inflamação/metabolismo
3.
PLoS One ; 6(2): e17234, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21386904

RESUMO

Autophagy is a cellular self-digestion process activated in response to stresses such as energy deprivation and oxidative stress. However, the mechanisms by which energy deprivation and oxidative stress trigger autophagy remain undefined. Here, we report that activation of AMP-activated protein kinase (AMPK) by mitochondria-derived reactive oxygen species (ROS) is required for autophagy in cultured endothelial cells. AMPK activity, ROS levels, and the markers of autophagy were monitored in confluent bovine aortic endothelial cells (BAEC) treated with the glycolysis blocker 2-deoxy-D-glucose (2-DG). Treatment of BAEC with 2-DG (5 mM) for 24 hours or with low concentrations of H(2)O(2) (100 µM) induced autophagy, including increased conversion of microtubule-associated protein light chain 3 (LC3)-I to LC3-II, accumulation of GFP-tagged LC3 positive intracellular vacuoles, and increased fusion of autophagosomes with lysosomes. 2-DG-treatment also induced AMPK phosphorylation, which was blocked by either co-administration of two potent anti-oxidants (Tempol and N-Acetyl-L-cysteine) or overexpression of superoxide dismutase 1 or catalase in BAEC. Further, 2-DG-induced autophagy in BAEC was blocked by overexpressing catalase or siRNA-mediated knockdown of AMPK. Finally, pretreatment of BAEC with 2-DG increased endothelial cell viability after exposure to hypoxic stress. Thus, AMPK is required for ROS-triggered autophagy in endothelial cells, which increases endothelial cell survival in response to cell stress.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Desoxiglucose/farmacologia , Células Endoteliais/efeitos dos fármacos , Espécies Reativas de Oxigênio/farmacologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/fisiologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , RNA Interferente Pequeno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos
4.
Acta Pharmacol Sin ; 31(10): 1267-76, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20802505

RESUMO

Physical stiffening of the large arteries is the central paradigm of vascular aging. Indeed, stiffening in the larger central arterial system, such as the aortic tree, significantly contributes to cardiovascular diseases in older individuals and is positively associated with systolic hypertension, coronary artery disease, stroke, heart failure and atrial fibrillation, which are the leading causes of mortality in the developed countries and also in the developing world as estimated in 2010 by World Health Organizations. Thus, better, less invasive and more accurate measures of arterial stiffness have been developed, which prove useful as diagnostic indices, pathophysiological markers and predictive indicators of disease. This article presents a review of the structural determinants of vascular stiffening, its pathophysiologic determinants and its implications for vascular research and medicine. A critical discussion of new techniques for assessing vascular stiffness is also presented.


Assuntos
Artérias/fisiopatologia , Doenças Cardiovasculares/fisiopatologia , Elasticidade , Resistência Vascular , Envelhecimento/fisiologia , Animais , Artérias/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Técnicas de Diagnóstico Cardiovascular , Dieta , Endotélio Vascular/fisiopatologia , Glucose/fisiologia , Humanos , Insulina/fisiologia , Sistemas Neurossecretores/fisiopatologia , Fatores de Risco
5.
Acta Pharmacol Sin ; 31(9): 1075-84, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20711221

RESUMO

AbstractAdenosine Monophosphate-activated Protein Kinase (AMPK), a serine/threonine kinase and a member of the Snf1/AMPK protein kinase family, consists of three protein subunits that together make a functional enzyme. AMPK, which is expressed in a number of tissues, including the liver, brain, and skeletal muscle, is allosterically activated by a rise in the AMP: ATP ratio (ie in a low ATP or energy depleted state). The net effect of AMPK activation is to halt energy consuming (anabolic) pathways but to promote energy conserving (catabolic) cellular pathways. AMPK has therefore often been dubbed the "metabolic master switch". AMPK also plays a critical physiological role in the cardiovascular system. Increasing evidence suggest that AMPK might also function as a sensor by responding to oxidative stress. Mostly importantly, AMPK modulates endogenous antioxidant gene expression and/or suppress the production of oxidants. AMPK promotes cardiovascular homeostasis by ensuring an optimum redox balance on the heart and vascular tissues. Dysfunctional AMPK is thought to underlie several cardiovascular pathologies. Here we review this kinase from its structure and discovery to current knowledge of its adaptive and maladaptive role in the cardiovascular system.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Doenças Cardiovasculares/enzimologia , Sistema Cardiovascular/enzimologia , Proteínas Quinases Ativadas por AMP/química , Animais , Humanos
6.
Int J Clin Exp Med ; 2(2): 149-58, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19684887

RESUMO

The pathogenesis of Alzheimer's Disease (AD) is not fully understood. Amyloid plaques could be causally linked to neuronal loss in AD. Two proteolytic products of the Amyloid Precursor Protein (APP), Amyloid beta40 (Abeta40) and Amyloid beta42 (Abeta42), are considered to be critical in the neurodegeneration seen in AD. However, in transgenic mice that overexpress human Abeta40 or Abeta42, it was shown that Abeta42 was much more amyloidogenic than Abeta40. In contrast to this observation, we have found that cultured cortical neurons from mice transgenic for human Abeta40 and for Abeta42 are both and statistically equally vulnerable to nutritive challenge induced by trophic factor withdrawal (TFW). Aberrant regulation of InsP(3)R (Inositol triphosphate receptor)-mediated calcium release has been implicated in neuronal cell death. It is however not clear whether this pathway plays a critical role in cortical neurons transgenic for different species of human Abeta. We now report that Abeta40 and Abeta42 equally exacerbated intracellular calcium response to TFW in cortical neurons following TFW. When bradykinin (BK), a potent stimulant of InsP(3)R-mediated calcium release from ER, was applied to these cells, wild-type (WT) neurons exhibited a steep rise in [Ca(2+)](i) but this was not observed in either Abeta transgenic type. Similarly, when 1 muM Xestopongin C (XeC), a specific blocker of InsP(3)R, was applied to these neurons, WT cells showed a significant attenuation of increase in [Ca(2+)](i) following TFW, while elevation in [Ca(2+)](i) induced by TFW remained largely unchanged in Abeta40 and Abeta42 cells. Finally, when we treated these cells with a Ca(2+) chelator (BAPTA; 10 muM), all three cell types had a marked attenuation of [Ca(2+)](i). These findings indicate that the exacerbated calcium dysregulation following TFW in Abeta transgenic neurons are likely to be mediated by calcium channels other than ER InsP3R receptors. Overall, our results also suggest that a highly amyloidogenic Abeta species, such as Abeta42, might not necessarily be significantly more neurotoxic than a less or non-amyloidogenic Abeta species, such as Abeta40.

7.
Neuropsychiatr Dis Treat ; 3(5): 597-612, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-19300589

RESUMO

Alzheimer's disease (AD) is a leading cause of chronic dementia in the US. Its incidence is increasing with an attendant increase in associated health care costs. Since its first description in a patient by Dr. Alois Alzheimer over a century ago, a large body of biomedical literature has established a detailed clinical and molecular profile of this disorder. Amyloid beta peptide (Abeta; a 39-42 amino acid molecule) is the major component of senile plaques, the lesions that are one of the pathologic hallmarks of AD (Wong et al 1985). Although many aspects of the biology of amyloid beta have been investigated, several fundamental questions about how this peptide causes AD neuropathology remain unanswered. The key question is: How is Abeta toxic to cerebral neurons? Because plaques are extra-neuronal deposits, it is difficult to imagine a structural basis for their toxicity. As an interesting contrast the other pathognomonic feature of AD, neurofibrillary tangles, are intra-axonal structural anomalies that are composed of the hyperphosphorylated microtubule associated (MAP) protein, tau. This review will assess the current thinking that relates to a recent hypothesis of Abeta toxicity. In 1992, Hardy and Higgins reported findings that suggested a new and intriguing possibility. These authors found that Abeta peptides disrupt Ca(2+) homeostasis in neurons and increase intracellular Ca(2+) [Ca(2+)](i). This was corroborated by Mattson and his colleagues who demonstrated that Abeta exposure to human cortical neurons raised [Ca2(+)](i) (Mattson, Cheng et al 1992); (Hardy and Higgins 1992). Finally, Nelson Arispe's group at the NIH specifically investigated the possibility that Abeta peptides might function like Ca(2+) ion channels (Arispe et al 1993). This and several subsequent studies have laid the foundation for a novel idea: "Abeta peptides are, in part, toxic to neurons because they form aberrant ion channels in neuronal membranes and thereby disrupt neuronal homeostasis". In this review we shall critically examine this theory in light of classic and contemporary literature.

8.
J Assoc Res Otolaryngol ; 5(1): 90-8, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14669069

RESUMO

Acrylonitrile, one of the 50 most commonly produced industrial chemicals, has recently been identified as a promoter of noise-induced hearing loss (NIHL). This agent has the potential to produce oxidative stress through multiple pathways. We hypothesize that acrylonitrile potentiates NIHL as a consequence of oxidative stress. The objectives of this study were to characterize acrylonitrile exposure conditions that promote permanent NIHL in rats and determine the ability of this nitrile to produce auditory dysfunction by itself. Additionally, we sought to determine whether a spin-trap agent that can form adducts with ROS would protect against the effects of acrylonitrile. Acrylonitrile administration produced significant elevation in NIHL detected as a loss in compound action potential sensitivity. The effect was particularly robust for high-frequency tones and particularly when acrylonitrile and noise were given on repeated occasions. Acrylonitrile by itself did not disrupt threshold sensitivity. Administration of the spin-trap agent phenyl- N- tert-butylnitrone (PBN), given to rats prior to acrylonitrile and noise, did block the elevation of NIHL by acrylonitrile. However, PBN at the dose and time interval given was ineffective in protecting auditory function in subjects exposed to noise alone. The results suggest that oxidative stress may play a role in the promotion of NIHL by acrylonitrile.


Assuntos
Acrilonitrila/toxicidade , Carcinógenos/toxicidade , Perda Auditiva Provocada por Ruído/fisiopatologia , Animais , Limiar Auditivo/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/metabolismo , Masculino , Ruído/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Long-Evans
9.
Toxicol Sci ; 75(1): 117-23, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12832658

RESUMO

There is growing evidence that agents that produce oxidative stress in the cochlea have significant ototoxic potential by themselves and can potentiate noise-induced hearing loss as well. Acrylonitrile (ACN) metabolism entails conjugation with glutathione, resulting in rapid and pronounced depletion of this important antioxidant in many organs including brain, liver, and kidney. ACN metabolism also results in cyanide (CN) formation through a secondary oxidative pathway. The results of two physiological experiments are reported here. First, the acute effects of ACN (50 mg/kg sc) on auditory sensitivity are assessed using a within subject study. In the second study, persistent effects of ACN alone (50 mg/kg, sc and 2 x 50 mg/kg, sc) and ACN in combination with noise exposure (8 h, 108 dB octave-band noise) are evaluated using threshold sensitivity as the dependent measure. Auditory threshold shift and absolute thresholds were determined using the compound action potential (CAP) amplitude. Acute ACN administration produces a loss in auditory threshold sensitivity that reached a maximum 10-20 min following sc injection. Auditory thresholds returned to control levels 75-100 min following exposure. In the study of permanent auditory threshold shifts, ACN plus noise increased auditory threshold impairment relative to rats receiving noise only when thresholds were assessed 3 weeks following exposure. ACN by itself did not produce permanent threshold impairment 3 weeks following administration. Assays were undertaken in separate groups of rats to track the elevation in blood CN and the depletion of total glutathione in cochlea, brain, and liver following ACN treatment. Systemic blood CN levels were not significantly elevated until 60-120 min following injection, and cochlear glutathione levels showed significant depletion as little as 15 min after injection and remained depressed for about 4 h. The results confirm the prediction that ACN is acutely ototoxic and can enhance noise-induced hearing loss.


Assuntos
Acrilonitrila/toxicidade , Doenças Cocleares/prevenção & controle , Perda Auditiva Provocada por Ruído/prevenção & controle , Animais , Limiar Auditivo , Encéfalo/metabolismo , Cóclea/metabolismo , Doenças Cocleares/etiologia , Cianetos/sangue , Glutationa/metabolismo , Perda Auditiva Provocada por Ruído/etiologia , Fígado/metabolismo , Masculino , Ruído/efeitos adversos , Ratos , Ratos Long-Evans , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...