Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1184325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274161

RESUMO

Heterogeneous nature is a pivotal aspect of cancer, rendering treatment problematic and frequently resulting in recurrence. Therefore, advanced techniques for identifying subpopulations of a tumour in an intact state are essential to develop novel screening platforms that can reveal differences in treatment response among subpopulations. Herein, we conducted a non-invasive analysis of oxygen metabolism on multiple subpopulations of patient-derived organoids, examining its potential utility for non-destructive identification of subpopulations. We utilised scanning electrochemical microscopy (SECM) for non-invasive analysis of oxygen metabolism. As models of tumours with heterogeneous subpopulations, we used patient-derived cancer organoids with a distinct growth potential established using the cancer tissue-originated spheroid methodology. Scanning electrochemical microscopy measurements enabled the analysis of the oxygen consumption rate (OCR) for individual organoids as small as 100 µm in diameter and could detect the heterogeneity amongst studied subpopulations, which was not observed in conventional colorectal cancer cell lines. Furthermore, our oxygen metabolism analysis of pre-isolated subpopulations with a slow growth potential revealed that oxygen consumption rate may reflect differences in the growth rate of organoids. Although the proposed technique currently lacks single-cell level sensitivity, the variability of oxygen metabolism across tumour subpopulations is expected to serve as an important indicator for the discrimination of tumour subpopulations and construction of novel drug screening platforms in the future.

2.
Biosens Bioelectron ; 219: 114808, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327566

RESUMO

Microphysiological systems (MPSs) with three-dimensional (3D) cultured models have attracted considerable interest because of their potential to mimic human health and disease conditions. Recent MPSs have shown significant advancements in engineering perfusable vascular networks integrated with 3D culture models, realizing a more physiological environment in vitro; however, a sensing system that can monitor their activity under biomimetic vascular flow is lacking. We designed an open-top microfluidic device with sensor capabilities and demonstrated its application in analyzing oxygen metabolism in vascularized 3D tissue models. We first validated the platform by using human lung fibroblast (hLF) spheroids. Then, we applied the platform to a patient-derived cancer organoid and evaluated the changes in oxygen metabolism during drug administration through the vascular network. We found that the platform could integrate a perfusable vascular network with 3D cultured cells, and the electrochemical sensor could detect the change in oxygen metabolism in a quantitative, non-invasive, and real-time manner. This platform would become a monitoring system for 3D cultured cells integrated with a perfusable vascular network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...