Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(6): 065301, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35213178

RESUMO

In this Letter, we give an analytical quantum description of a nonequilibrium polariton Bose-Einstein condensate (BEC) based on the solution of the master equation for the full polariton density matrix in the limit of fast thermalization. We find the density matrix of a nonequilibrium BEC, that takes into account quantum correlations between all polariton states. We show that the formation of BEC is accompanied by the build-up of cross-correlations between the ground state and the excited states reaching their highest values at the condensation threshold. Despite the nonequilibrium nature of polariton systems, we show the average population of polariton states exhibits the Bose-Einstein distribution with an almost zero effective chemical potential above the condensation threshold similar to an equilibrium BEC. We demonstrate that above threshold the effective temperature of polaritons drops below the reservoir temperature.

2.
Phys Rev E ; 106(6-1): 064108, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36671074

RESUMO

An ideal equilibrium Bose-Einstein condensate (BEC) is usually considered in the grand canonical (µVT) ensemble, which implies the presence of the chemical equilibrium with the environment. However, in most experimental scenarios, the total amount of particles in BEC is determined either by the initial conditions or by the balance between dissipation and pumping. As a result, BEC may possess the thermal equilibrium but almost never the chemical equilibrium. In addition, many experimentally achievable BECs are non-ideal due to interaction between particles. In the recent work [Shiskov et al., Phys. Rev. Lett. 128, 065301 (2022)0031-900710.1103/PhysRevLett.128.065301], it has been shown that invariant subspaces in the system Hilbert space appear in non-equilibrium BEC in the fast thermalization limit. In each of these subspaces, Gibbs distribution is established with a certain number of particles that makes it possible to investigate properties of non-ideal non-equilibrium BEC independently in each invariant subspace. In this work, we analyze the BEC stability due to change in dispersion curve caused by non-linearity in BEC. Generally, non-linearity leads to the redshift or blueshift of the dispersion curve and to the change in the effective mass of the particles. We show that the redshift of the dispersion curve can lead to the negative compressibility of BEC and onset of instability, whereas the change in the effective mass always makes BEC more stable. We find the explicit condition for the particle density in BEC, at which the negative compressibility appears. We show that the appearance of BEC instability is followed by the formation of stable and spatially inhomogeneous BEC.

4.
Nature ; 597(7877): 493-497, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34552252

RESUMO

The recent progress in nanotechnology1,2 and single-molecule spectroscopy3-5 paves the way for emergent cost-effective organic quantum optical technologies with potential applications in useful devices operating at ambient conditions. We harness a π-conjugated ladder-type polymer strongly coupled to a microcavity forming hybrid light-matter states, so-called exciton-polaritons, to create exciton-polariton condensates with quantum fluid properties. Obeying Bose statistics, exciton-polaritons exhibit an extreme nonlinearity when undergoing bosonic stimulation6, which we have managed to trigger at the single-photon level, thereby providing an efficient way for all-optical ultrafast control over the macroscopic condensate wavefunction. Here, we utilize stable excitons dressed with high-energy molecular vibrations, allowing for single-photon nonlinear operation at ambient conditions. This opens new horizons for practical implementations like sub-picosecond switching, amplification and all-optical logic at the fundamental quantum limit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...