Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ontogenez ; 47(6): 331-8, 2016.
Artigo em Russo | MEDLINE | ID: mdl-30272883

RESUMO

The mammalian germinal vesicle­stage (GV) oocytes are divided into two major types, NSN (non-surrounded nucleolus) and SN (surrounded nucleolus), and at least one intermediate type, pSN (partly surrounded nucleolus), based on large-scale chromatin configuration. In mice, the SN oocytes are considered to be the most meiotically competent, which explains active study of their phenotypic characteristics necessary for improvement of human reproductive technologies. One of such characteristics is the position of the GV (nucleus) relative to the center of the oocyte. However, the current data on this issue are contradictory and even completely absent for pSN oocytes. In this work, we have studied the GV position in 187 mouse GV oocytes belonging to NSN, SN, and pSN types using different approaches known from the literature. Our results suggest that (1) the most abundant in all examined types of oocytes are central GVs (43­ 66%) and the least abundant are peripheral GVs (12­39%); the pSN oocytes are closer to SN oocytes rather than to NSN oocytes according to the GV position; (3) the position of the nucleus in mouse GV oocytes is an ambiguous marker of large-scale chromatin configuration and, correspondingly, maturation competence of the oocyte; (4) the diversity of the GV position in NSN, SN, and pSN oocytes most likely reflects the ability of GVs to migrate; and (5) assessment of the GV position according to three variants (central, peripheral, and intermediate) is more informative as compared with two variants (central and peripheral).


Assuntos
Cromatina/metabolismo , Oócitos/metabolismo , Animais , Feminino , Camundongos , Oócitos/citologia
2.
Ontogenez ; 46(3): 162-73, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26204768

RESUMO

Postnatal development of mammalian oocytes is accompanied by functional and structural remodeling of the nucleolar apparatus: the final stage of this process is the formation of large objects (up to 10 µm in diameter) termed nucleolus-like bodies (NLBs) in preovulatory GV oocytes. N LB material was shown to be essential for early embryonic development, but its composition is still uncharacterized. In the present study, the protein-binding dye fluorescein-5-isothiocyanate (FITC) was used to show that proteins characterized by a high local concentration are essential NLB components in mouse GV oocytes. One of these proteins was able to be identified for the first time using a mild treatment of oocytes with proteinase K; the protein identified was fibrillarin, a factor of early pre-rRNA processing. Fibrillarin is present in the inner NLB mass of all oocytes capable of synthesizing rRNA; however, it is not colocalized with BrUTP microinjected into oocytes in order to identify transcribed ribosomal genes, in contrast to the "surface" fibrillarin. These observations imply the accumulation of nucleolar proteins not involved in ribosome biogenesis inside the NLB. All NLBs present in an individual nucleus of an NSN-type GV oocyte contain fibrillarin and are associated with active ribosomal genes. The results obtained in the present work demonstrate that proteinase K treatment of GV mouse oocytes allows for: (1) identification of "cryptic" proteins inside the densely packed NLB material and (2) the enhancement of oocyte image quality during BrUTP-based identification of rRNA synthesis sites but (3) not for the detection of active ribosomal genes in the inner mass of the NLB. The fluorescent dye FITC can be recommended for assessment of intracellular protein localization in the oocytes of all mammalian species.


Assuntos
Nucléolo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Endopeptidase K/química , Oócitos/metabolismo , Precursores de RNA/biossíntese , Transcrição Gênica/fisiologia , Animais , Feminino , Camundongos , Oócitos/citologia
4.
Bioorg Khim ; 40(4): 421-32, 2014.
Artigo em Russo | MEDLINE | ID: mdl-25898752

RESUMO

The eukaryotic proteins comprising the SURF6 protein family are evolutionary conservative and housekeeping proteins however, functional roles of human SURF6 have not been studied so far. To shed light to this question in the present work we applied GST pull-down assay and used two proteins fused with GST, namely human GST-SURF6 and the conservative C-terminal domain of mouse Surf6 that has 85% homology with the C-terminus of the human SURF6 conservative domain (GST-Surf6-dom), to identify SURF6-interacting proteins in human HeLa cells. The results obtained showed that GST-SURF6 interacts with several key nucleolar RNA processing factors (B23/nucleophosmin, nucleolin, EBP2), and also with the specific cofactor of RNA polymerase I, protein UBE These results are the first experimental evidences in favor of participation of the human SURF6 protein in ribosome biogenesis, including transcription of rDNA and processing of rRNAs. The same results were obtained, when GST-Surf6-dom was used to pull-down proteins in HeLa cells. In addition, the panel of the GST-Surf6-dom protein partners, which were identified by mass-spectrometry, points to putative interactions of human SURF6 with a number of nuclear and nucleolar, proteins of other functional groups, i.e. to the protein plurifunctionality.


Assuntos
Nucléolo Celular/genética , Proteínas Nucleares/química , RNA Ribossômico/genética , Ribossomos/genética , Animais , Nucléolo Celular/química , DNA Ribossômico/química , DNA Ribossômico/genética , Regulação da Expressão Gênica , Glutationa Transferase/química , Glutationa Transferase/genética , Células HeLa , Humanos , Camundongos , Proteínas Nucleares/genética , Nucleofosmina , Ligação Proteica , RNA Polimerase I/química , RNA Polimerase I/genética , RNA Ribossômico/química , Ribossomos/química
5.
Acta Naturae ; 3(4): 100-6, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22649709

RESUMO

Nucleolus is the major structural domain of the cell nucleus, which in addition to proteins contains ribosomal RNA (rRNA) at different stages of maturation (or pre-rRNA). In mammals, the onset of mitosis is accompanied by the inhibition of rRNA synthesis, nucleolus disassembly, and the migration of pre-rRNA to the cytoplasm. However, the precise role of cytoplasmic pre-rRNA in mitosis remains unclear, and no comparative analysis of its different forms at consequent mitotic stages has thus far been performed. The focus of this research was the study of the localization of pre-rRNA in mitotic NIH/3T3 mouse fibroblasts by fluorescentin situhybridization (FISH) with probes to several regions of mouse primary 47S pre-rRNA transcripts and by confocal laser microscopy. The results reveal that all types of pre-rRNA appear in the cytoplasm at the beginning of mitosis, following the breakdown of the nucleolus and nuclear envelope. However, not all pre-rRNA are transported by chromosomes from maternal cells into daughter cells. At the end of mitosis, all types of pre-rRNA and 28S rRNA can be visualized in nucleolus-derived foci (NDF), structures containing many proteins of mature nucleoli the appearance of which indicates the commencement of nucleologenesis. However, early NDF are enriched in less processed pre-RNA, whereas late NDF contain predominantly 28S rRNA. Altogether, the results of this study strengthen the hypotheses that postulate that different forms of pre-rRNA may play various roles in mitosis, and that NDF can be involved in the maturation of pre-rRNA, remaining preserved in the cytoplasm of dividing cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...