Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 440: 129698, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35952428

RESUMO

The health concerns of microplastics (MPs) and nanoplastics (NPs) surge, but the key indicators to evaluate the adverse risks of MPs/NPs are elusive. Recently, MPs/Ps were found to disturb glucose and lipid metabolism in rodents, suggesting that MPs/NPs may play a role in obesity progression. In this study, we firstly demonstrated that the distribution of fluorescent polystyrene nanoplastics (nPS, 60 nm) white adipose tissue (WAT) of mice. Furthermore, nPS could traffic across adipocytes in vitro and reduced lipolysis under ß-adrenergic stimulation in adipocytes in vitro and ex vivo. Consistently, chronic oral exposure to nPS at the dietary exposure relevant concentrations (3 and 223 µg/kg body weight) impaired fasting-induced lipid mobilization in obese mice and subsequently contributed to larger adipocyte size in the subcutaneous WAT. In addition, the chronic exposure of nPS induced macrophage infiltration in the small intestine and increased lipid accumulation in the liver, accelerating the disruption of systemic metabolism. Collectively, our findings highlight the potential obesogenic role of nPS via diminishing lipid mobilization in WAT of obese mice and suggest that lipolysis relevant parameters may be used for evaluating the adverse effect of MPs/NPs in clinics.


Assuntos
Dieta Hiperlipídica , Lipólise , Tecido Adiposo , Adrenérgicos , Animais , Exposição Dietética , Jejum , Glucose , Lipídeos , Camundongos , Camundongos Obesos , Microplásticos/toxicidade , Plásticos , Poliestirenos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...