Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(38): 21748-21756, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34549758

RESUMO

A recent report on the azo coupling of 4-nitrobenzo-15-crown-ether (4NB15C) and 4-nitrothiophenol (4NTP) indicated that the reaction barrier could be reduced greatly with surface plasmonic effects on silver dendritic nanostructures in aqueous solution. Accordingly, an azo coupling reaction mechanism was proposed based on one or two SERS peaks. Toward a profound understanding of this azo coupling reaction mechanism, it is crucial to scrutinize the origin of the full SERS spectrum. Here, we construct a molecular model consisting of 4NTP and 4NB15C on an Ag7 cluster that simulates a silver dendritic nanostructure, and investigate the SERS spectra of the azo coupling of these two molecules. We propose five different adsorption sites and 13 different orientations of 4NTP on the Ag7 cluster and optimize the geometries of the five configurations. With each optimized configuration of 4NTP adsorbed on Ag7, we further consider the azo coupling product with a 4NB15C molecule and simulate the corresponding Raman spectra. Comparing the measured Raman spectra and model analysis, we conclude that the azo coupling reaction depends decisively on a parallel molecular orientation of the adsorbed 4NTP relative to the facets of Ag7, the orientation of which further directs the subsequent reaction for the product of 4NB15C-4NTP.

2.
J Phys Chem Lett ; 8(2): 470-477, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28067527

RESUMO

Using simultaneously scanning small-angle X-ray scattering (SAXS) and UV-vis absorption with integrated online size exclusion chromatography, supplemental with molecular dynamics simulations, we unveil the long-postulated global structure evolution of a model multidomain protein bovine serum albumin (BSA) during acid-induced unfolding. Our results differentiate three global packing structures of the three molten globule domains of BSA, forming three intermediates I1, I2, and E along the unfolding pathway. The I1-I2 transition, overlooked in all previous studies, involves mainly coordinated reorientations across interconnected molten globule subdomains, and the transition activates a critical pivot domain opening of the protein for entering into the E form, with an unexpectedly large unfolding free energy change of -9.5 kcal mol-1, extracted based on the observed packing structural changes. The revealed local packing flexibility and rigidity of the molten globule domains in the E form elucidate how collective motions of the molten globule domains profoundly influence the folding-unfolding pathway of a multidomain protein.


Assuntos
Proteínas/química , Soroalbumina Bovina/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Desnaturação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Desdobramento de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
3.
Phys Chem Chem Phys ; 18(4): 3179-87, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26743265

RESUMO

With a deformed object of a rigid rod inside, the local dislocations may be tracked relatively easily with respect to the internal rigid rod. We apply this concept on protein folding-unfolding to track the internal structural changes of an unfolded protein in solution. Proposed here is a protein internal coordination based on the major axis X of an ellipsoidal protein and the stable intrinsic transition dipole moment µ of the protein during unfolding. In this methodology, small-angle X-ray scattering (SAXS) is used to provide the protein global morphologies in the native and unfolded states. Furthermore, time-resolved fluorescence anisotropy (TRFA) provides the relative orientation between X and µ of Trp59 of the model protein cytochrome c. Hence observed in the protein unfolding with denaturants, acid, urea, or GuHCl, is the elongation of the native protein conformation along a reoriented protein major axis; accompanied are the different extents of relocations of the terminal α helices and loop structures of the protein in the corresponding unfolding.


Assuntos
Citocromos c/química , Animais , Cavalos , Conformação Proteica , Dobramento de Proteína , Teoria Quântica , Espalhamento a Baixo Ângulo , Difração de Raios X
4.
Biophys J ; 94(12): 4828-36, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18326641

RESUMO

Equilibrium unfolding behaviors of cytochrome c and lysozyme induced by the presence of urea (0-10 M) as well as changes in temperature (295-363 K) or pH (1.8-7) are examined via small-angle x-ray scattering and spectroscopic techniques, including circular dichroism and optical absorption. Denaturant and temperature effects are incorporated into the free energy expression for a general multigroup unfolding process. Results indicate that there are at least four unfolding groups in the temperature-, urea-, or pH-induced unfolding of cytochrome c: two of these are related to the prosthetic heme group, and the other two correspond, respectively, to the unfolding of alpha-helices and global changes in protein morphology that are largely unaccounted for by the first two groups. In contrast, the unfolding of lysozyme approximately follows a simple one-group process. A modified mean-field Ising model is adopted for a coherent description of the unfolding behaviors observed. Thermodynamic parameters extracted from simple denaturing processes, on the basis of the Ising model, can closely predict unfolding behaviors of the proteins in compounded denaturing environments.


Assuntos
Cristalografia/métodos , Citocromos c/química , Citocromos c/ultraestrutura , Modelos Químicos , Modelos Moleculares , Muramidase/química , Muramidase/ultraestrutura , Simulação por Computador , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína
5.
J Phys Chem A ; 111(37): 9062-9, 2007 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-17725327

RESUMO

A molecular theory of time-resolved sum-frequency generation (SFG) has been developed. The theoretical framework is constructed using the coupled-oscillator model in the adiabatic approximation. This theory can treat not only the vibrational spectroscopy but also vibrational dynamics. An application of this theory is also provided for estimation of the time constants of the intermolecular vibrational energy transfer between water molecules. This approach can be used for molecular analysis of the experimental results of Shen at al. on the SFG studies of vibrational dynamics of water.

6.
J Phys Chem A ; 111(38): 9286-90, 2007 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-17696324

RESUMO

The local and global structural changes of cytochrome c induced by urea in aqueous solution have been studied using X-ray absorption spectroscopy (XAS) and small-angle X-ray scattering (SAXS). According to the XAS result, both the native (folded) protein and the unfolded protein exhibit the same preedge features taken at Fe K-edge, indicating that the Fe(III) in the heme group of the protein maintains a six-coordinated local structure in both the folded and unfolded states. Furthermore, the discernible differences in the X-ray absorption near-edge structure (XANES) of these two states are attributed to a possible spin transition of the Fe(III) from a low-spin state to a high-spin state during the unfolding process. The perseverance of six-coordination and the spin transition of the iron are reconciled by a proposed ligand exchange, with urea and water molecules replacing the methionine-80 and histidine-18 axial ligands, respectively. The SAXS result reveals a significant morphology change of cytochrome c from a globular shape of a radius of gyration R(g) = 12.8 A of the native protein to an elongated ellipsoid shape of R(g) = 29.7 A for the unfolded protein in the presence of concentrated urea. The extended X-ray absorption fine structure (EXAFS) data unveil the coordination geometries of Fe(III) in both the folded and unfolded state of cytochrome c. An initial spin transition of Fe(III) followed by an axial ligand exchange, accompanied by the change in the global envelope, is proposed for what happened in the protein unfolding process of cytochrome c.


Assuntos
Citocromos c/química , Ureia/química , Água/química , Modelos Moleculares , Desnaturação Proteica , Dobramento de Proteína , Soluções/química , Espectrometria por Raios X
7.
J Am Chem Soc ; 128(27): 8845-8, 2006 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-16819878

RESUMO

Chiral sum-frequency (SF) spectroscopy that measures both the real and the imaginary components of the SF spectral response was demonstrated for the first time. It was based on interference of the SF signal with a dispersionless SF reference. Solutions of 1,1'-bi-2-naphthol (BN) were used as model systems, and their chiral SF spectra over the first exciton-split transitions were obtained. Chiral spectra are useful for determination of absolute configuration and conformation of chiral molecules.


Assuntos
Análise Espectral/métodos , Conformação Molecular , Naftóis/química , Sensibilidade e Especificidade , Soluções/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...