Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 27(13): 15174-15187, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32072409

RESUMO

Mosquitoes are principal vector of several vector-borne diseases affecting human beings leading to thousands of deaths per year and responsible for transmitting diseases like malaria, dengue, chikungunya, yellow fever, Zika virus, Japanese encephalitis, and lymphatic filariasis. In the present study, we evaluated the different solvent extracts of mangrove Avicennia marina for their toxicity against larvae of three major mosquito vectors, as well as selected microbial pathogens. The larvicidal mortality of third instars was observed after 24 h. Highest larval mortality was found for the acetone extract of A. marina against Culex quinquefasciatus (LC50 = 0.197 mg/ml; LC90 = 1.5011 mg/ml), Anopheles stephensi (LC50 = 0.176 mg/ml; LC90 = 3.6290 mg/ml), and Aedes aegypti (LC50 = 0.164 mg/ml; LC90 = 4.3554 mg/ml). GC-MS analysis of acetone extract revealed 5 peaks, i.e., 1-hexyl-2-nitrocyclohexane (3.229%), eicosanoic acid (40.582%), cis-9-hexadecenal (70.54%), oleic acid (4.646%), and di-N-decylsulfone (5.136%). Parallel to larvicidal assay, sub-lethal dosage acetone extracts severely affected the enzyme regulations (α,ß-carboxylesterase, GST and CYP450) of third instars. Larval and pupal durations increased in all treatment sub-lethal dosage (0.127, 0.151, 0.177, and 0.197 mg/ml), whereas egg hatchability and means of fecundity decreased compared to control. The survival rate was reduced statistically in Cx. quinquefasciatus (χ2 = 23.77, df = 1, P = 0.001) in all the treatment dosages as compared to the control. Antimicrobial activity assays showed significant growth inhibition post treatment with acetone and methanol extracts against Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus pneumoniae, Escherichia coli, and Shigella flexneri. Overall, these results indicated the potential employment of A. marina extracts as a source of natural mosquitocidal and antimicrobial compounds of green-based environment.


Assuntos
Aedes , Avicennia , Culex , Inseticidas , Infecção por Zika virus , Zika virus , Animais , Humanos , Larva , Mosquitos Vetores , Extratos Vegetais , Folhas de Planta
2.
Res Rep Trop Med ; 10: 145-151, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31819700

RESUMO

BACKGROUND: Insecticide resistance among mosquito vectors for synthetic insecticides still remains a major problem for control efforts. This study assessed the ovicidal potential of crude solvent extracts from the medicinal plant Cipadessa baccifera comparatively to standard registered synthetic insect growth regulators (IGR) on freshly laid eggs of Culex quinquefasciatus. METHOD: Five plant extracts were prepared using different solvents. The batches of eggs were exposed to different concentrations of each solvent extract comparatively to synthetic IGR. The hatched eggs of Cx. quinquefasciatus were subjected to different concentrations. The first instars that emerged from the eggs were counted daily. The egg hatching inhibition was observed 24, 48 and 72 hrs post treatment. The desiccation median time (DT50 and DT90) was calculated. RESULTS: The percent egg hatching inhibition was inversely proportional to the concentration of extracts. The morphological damage to the eggs was observed. Among five solvent extracts, acetone extracts showed the highest ovicidal activity. The changes in eggshell morphology were observed. The maximum ovicidal activity was observed in acetone extracts with DT50 value of 1.70 hrs (0.91-2.22). The methanol plant extract using gas chromatography-mass spectrometry identified 14 compounds. CONCLUSION: These results suggest that the acetone extracts of C. baccifera have the potential to be used as an ovicidal agent for controlling mosquito populations in aquatic stages. The biodegradability of the extracts has the advantage of being eco-friendly.

3.
Pathog Glob Health ; 112(1): 37-46, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29457957

RESUMO

Mosquito control using chemical insecticides is facing a major challenge due to development of insecticide resistance. Improving the efficiency of existing insecticides using synergistic secondary metabolites of biological origin is increasingly being researched. Herein, we evaluated the toxicity of Fusarium oxysporum extract alone and in binary combinations with temephos, on larvae and pupae of Anopheles stephensi, Aedes aegypti and Culex quinquefaciatus. F. oxysporum extract was characterized using TLC, FT-IR and GC-MS. After 24 h of exposure, the binary combination of temephos + F. oxysporum extract (1:1 ratio) was highly toxic to larvae of An. stephensi (LC50: 35.927 µg/ml), Ae. aegypti (LC50: 20.763 µg/ml) and Cx. quinquefasciatus, (LC50: 51.199 µg/ml). For pupae LC50 values were 38.668, 26.394, and 72.086 µg/ml, respectively. Histology studies of mosquitoes exposed to F. oxysporum extract showed vacuolation in epithelium, as well as in adipose, and muscle tissues of larval midgut. Overall, our results show that the synergistic combination of temephos and F. oxysporum extract is highly effective to control mosquito young instars.


Assuntos
Misturas Complexas/farmacologia , Sinergismo Farmacológico , Fusarium/química , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Temefós/farmacologia , Aedes , Animais , Anopheles , Cromatografia em Camada Fina , Misturas Complexas/química , Misturas Complexas/isolamento & purificação , Culex , Cromatografia Gasosa-Espectrometria de Massas , Histocitoquímica , Larva/efeitos dos fármacos , Pupa/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Análise de Sobrevida
4.
Environ Toxicol Pharmacol ; 56: 76-85, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28886429

RESUMO

AIM: Oxidative stress is an important component of the mechanism of pesticide toxicity. The aim of the present study was to investigate the time-dependent melatonin effects against abamectin-induced oxidative stress in a S.litura model. Larvae were divided into 5 different groups; (1) control group,(2) Melatonin group (4.3×10-5M/100ml diet), (3) Abamectin group 1.5ml/L, (4) Pre-melatonin treated group (PM) (4.3×10-5M/100ml diet) before abamectin exposure 1.5ml/L, (5) Post-melatonin treated group (TM) after abamectin exposure. Melatonin was supplemented via artificial diet in PM and TM animals during 24h. MAIN METHODS: Midgut, fatbody, and hemolymph, were collected for the analysis of oxidative stress markers (Total ROS, GSH, nitrite, TBARS, LPO), antioxidant enzyme levels (SOD, GST, CAT, POX, APOX) in fifth instar larvae. Midgut damage was examined by using morphological analysis. KEY FINDINGS: Our results observed that ABA group showed significant changes (p<0.001) in the ROS and carbonyl content in midgut. The increase of antioxidant enzyme levels (SOD, CAT, POX, and APOX) in midgut was led by the continuous free radical scavenger cascade of melatonin. Significant (p<0.01) increases in CAT and APOX levels were seen in the fatbody of PM and TM treated insects. SIGNIFICANCE: In conclusion, the results of the study revealed that abamectin toxicity generates oxidative stress in the insect, while pre-melatonin treatment reduces this damage due to its antioxidant properties, especially POX levels in midgut, fatbody, and hemolymph. Therefore, indoleamine can play a vital role curtailing the abamectin toxicity in time dependent manner in S.litura.


Assuntos
Inseticidas/toxicidade , Ivermectina/análogos & derivados , Melatonina/farmacologia , Spodoptera/efeitos dos fármacos , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Insetos/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Ivermectina/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Spodoptera/crescimento & desenvolvimento , Fatores de Tempo
5.
PLoS One ; 11(7): e0158088, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27391146

RESUMO

BACKGROUND: The resistance status of malaria vectors to different classes of insecticides used for public health has raised concern for vector control programmes. Alternative compounds to supplement the existing tools are important to be searched to overcome the existing resistance and persistence of pesticides in vectors and the environment respectively. The mosquitocidal effects of Glycosmis pentaphylla using different solvents of acetone, methanol, chloroform and ethyl acetate extracts against three medically important mosquito vectors was conducted. METHODS: Glycosmis pentaphylla plant leaves were collected from Kolli Hills, India. The WHO test procedures for larval and adult bioassays were used to evaluate extracts against mosquito vectors, and the chemical composition of extracts identified using GC-MS analysis. RESULTS: The larvicidal and adulticidal activity of G. pentaphylla plant extracts clearly impacted the three species of major mosquitoes vectors. Acetone extracts had the highest larvicidal effect against An. stephensi, Cx. quinquefasciatus and Ae. aegypti with the LC50 and LC90 values of 0.0004, 138.54; 0.2669, 73.7413 and 0.0585, 303.746 mg/ml, respectively. The LC50 and LC90 adulticide values of G. pentaphylla leaf extracts in acetone, methanol, chloroform and ethyl acetate, solvents were as follows for Cx. quinquefasciatus, An. stephensi and Ae. Aegypti: 2.957, 5.458, 2.708, and 4.777, 3.449, 6.676 mg/ml respectively. The chemical composition of G. pentaphylla leaf extract has been found in 20 active compounds. CONCLUSIONS: The plant leaf extracts of G. pentaphylla bioactive molecules which are effective and can be developed as an eco-friendly approach for larvicides and adulticidal mosquitoes vector control. Detailed identification and characterization of mosquitocidal effect of individual bioactive molecules ingredient may result into biodegradable effective tools for the control of mosquito vectors.


Assuntos
Aedes/efeitos dos fármacos , Anopheles/efeitos dos fármacos , Culex/efeitos dos fármacos , Inseticidas/farmacologia , Controle de Mosquitos , Folhas de Planta/química , Rutaceae/química , Animais , Bioensaio , Cromatografia Gasosa-Espectrometria de Massas , Larva/efeitos dos fármacos , Extratos Vegetais/farmacologia , Solventes
6.
Parasitol Res ; 114(1): 167-73, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25320044

RESUMO

Mosquito vectors are responsible for the transmission of parasitic and viral infections, including loss in commercial and labor outputs, particularly in developing countries with tropical and subtropical climates. The aim of the present study is to evaluate the adulticidal and smoke toxicity of Cipadessa baccifera (Roth) against three important mosquitoes vectors, Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Adult mortality was observed after 24-h recovery period. The plant crude extracts showed dose-dependent mortality. At higher concentrations, the adult showed restless movement for some times with abnormal wagging and then died. Among the extracts tested, the highest adulticidal activity was observed in acetone extract against An. stephensi followed by Ae. aegypti and Cx. quinquefasciatus with the LD50 and LD90 values 16.021 (14.080-18.345), 29.095 (25.118-34.089); 23.581 (22.100-28.315), 38.636 (35.321-41.021); and 13.560 (9.479-17.391), 248.35 (203.47-344.43) mg/ml, respectively. No mortality was recorded in the control. Smoke toxicity was observed at 10-min interval for 40 min and the mortality data were recorded. Among the C. baccifera plant powder tested. Smoke toxicity results show that Cx. quinquefasciatus, An. stephensi, and Ae. aegypti shows 88.6 ± 1.8, 78.2 ± 0.5, and 77 ± 1, respectively. One hundred percent mortality was recorded in the commercial mosquito control. The present study shows that C. baccifera leaf powder can be used as an efficient toxicity against mosquitoes. These results suggest that the leaf extracts of C. baccifera have a potential to be used as an ideal eco-friendly approach for the control of mosquitoes.


Assuntos
Inseticidas/farmacologia , Meliaceae/química , Controle de Mosquitos/métodos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Fumaça , Aedes/efeitos dos fármacos , Animais , Anopheles/efeitos dos fármacos , Culex/efeitos dos fármacos , Culicidae , Inseticidas/química , Larva , Extratos Vegetais/química
7.
J Photochem Photobiol B ; 135: 1-6, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24792567

RESUMO

Ultraviolet light (UV-B), which emits radiation in the range of 280-315 nm, has been used worldwide in light trapping of insect pests. In this article, we test the hypothesis that one of the duration of UV-B exposure has a differential impact on oxidative stress marker enzymes in Spodoptera litura. Effect of UV-B exposure on total protein and antioxidant activities of superoxide dismutase (SOD), catalase (CAT), peroxidases (POX) and glutathione-S-transferase (GST) were investigated in S. litura. The adults were exposed to UV-B light for various time periods (0, 30, 60, 90 and 120 min). We found that exposure to UV-B light for 30 and 60 min resulted in increased activities of POX. When the exposure time lasted for 60 and 90 min, the activities of SOD remained significantly higher than the control. However, the POX, CAT and GST activity decreased to control levels at 90 and 120 min. whereas relatively long duration exposure activates the xenobiotics detoxifying enzymes like GST and POX and CAT enzymes. Longer UV-B exposure may interfere with pesticide detoxification mechanism in insects, making them more susceptible to insecticides.


Assuntos
Antioxidantes/metabolismo , Estresse Oxidativo/efeitos da radiação , Spodoptera/metabolismo , Spodoptera/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Animais , Proteínas de Insetos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Spodoptera/enzimologia
8.
Parasitol Res ; 113(5): 1673-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24553980

RESUMO

Vector-borne diseases caused by mosquitoes are one of the major economic and health problems in many countries. The Aedes aegypti mosquito is a vector of several diseases in humans like yellow fever and dengue. Vector control methods involving the use of chemical insecticides are becoming less effective due to development of insecticides resistance, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and non-target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. Today, nanotechnology is a promising research domain which has wide-ranging application vector control programs. The present study investigates the larvicidal potential of solvent leaf extracts of Leucas aspera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of Aedes aegypti. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-Vis spectra, x-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM), and were used to characterize and support the biosynthesis of silver nanoparticles. The formation of the AgNPs synthesized from the XRD spectrum compared with Bragg reflections can be indexed to the (111) orientations, respectively, confirmed the presence of AgNPs. The FT-IR spectra of AgNPs exhibited prominent peaks at 3,447.77; 2,923.30; and 1,618.66 cm(-1). The spectra showed sharp and strong absorption band at 1,618.66 cm(-1) assigned to the stretching vibration of (NH) C═O group. The band 1,383 developed for C═C and C═N stretching, respectively, and was commonly found in the proteins. SEM analysis of the synthesized AgNPs clearly showed the clustered and irregular shapes, mostly aggregated, and having the size of 25-80 nm. Energy-dispersive x-ray spectroscopy showed the complete chemical composition of the synthesized AgNPs. In larvicidal activity, the results showed that the maximum efficacy was observed in synthesized AgNPs leaf extracts against the fourth instar larvae of A. aegypti (LC50 values of 8.5632, 10.0361, 14.4689, 13.4579, 17.4108, and 27.4936 mg/l) and (LC90 values of 21.5685, 93.03928, 39.6485, 42.2029, 31.3009, and 53.2576 mg/l), respectively. These results suggest that the synthesized AgNPs leaf extracts have a higher larvicidal potential as compared to crude solvent extracts thus making them an effective combination for controlling A. aegypti.


Assuntos
Aedes/efeitos dos fármacos , Inseticidas , Lamiaceae/química , Nanopartículas Metálicas , Extratos Vegetais/farmacologia , Prata/farmacologia , Animais , Larva/efeitos dos fármacos , Controle de Mosquitos , Extratos Vegetais/química , Folhas de Planta/química , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Parasitol Res ; 113(3): 875-80, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24337613

RESUMO

Vector-borne diseases caused by mosquitoes are one of the major economic and health problems in many countries. Aedes aegypti mosquito is a vector of several diseases in humans like yellow fever and dengue. Vector control methods involving use of chemical insecticides are becoming less effective due to the development of insecticides resistance, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and nontarget organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. Today, nanotechnology is a promising research domain which has a wide ranging application in vector control programs. The present study investigates the larvicidal potential of solvent leaf extracts of Leucas aspera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of A. aegypti. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-Vis spectra, X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM), and were used to characterize and support the biosynthesis of silver nanoparticles. The formation of the synthesized AgNPs from the XRD spectrum compared with Bragg reflections can be indexed to the (111) orientations, respectively, confirmed the presence of AgNPs. The FTIR spectra of AgNPs exhibited prominent peaks at 3,447.77, 2,923.30, and 1,618.66 cm(-1). The spectra showed sharp and strong absorption band at 1,618.66 cm(-1) assigned to the stretching vibration of (NH) C═O group. The band 1,383 developed for C═C and C═N stretching, respectively, and was commonly found in the proteins. SEM analysis of the synthesized AgNPs clearly showed the clustered and irregular shapes, mostly aggregated and having the size of 25-80 nm. Energy-dispersive X-ray spectroscopy (EDX) showed the complete chemical composition of the synthesized AgNPs. In larvicidal activity, the results showed that the maximum efficacy was observed in synthesized AgNP from leaf extracts against the fourth instar larvae of A. aegypti with LC50 values of 8.5632, 10.0361, 14.4689, 13.4579, 17.4108, and 27.4936 mg/l and LC90 values of 21.5685, 93.03928, 39.6485, 42.2029, 31.3009, and 53.2576 mg/l respectively. These results suggest that the synthesized AgNP from leaf extracts have a higher larvicidal potential as compared to crude solvent extracts thus making them an effective combination for controlling A. aegypti.


Assuntos
Aedes/efeitos dos fármacos , Lamiaceae/química , Nanopartículas Metálicas/química , Controle de Mosquitos , Extratos Vegetais/química , Prata/farmacologia , Animais , Inseticidas/química , Larva/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...