Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 18(6)2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37703889

RESUMO

Micro/nanobots are integrated devices developed from engineered nanomaterials that have evolved significantly over the past decades. They can potentially be pre-programmed to operate robustly at numerous hard-to-reach organ/tissues/cellular sites for multiple bioengineering applications such as early disease diagnosis, precision surgeries, targeted drug delivery, cancer therapeutics, bio-imaging, biomolecules isolation, detoxification, bio-sensing, and clearing up clogged arteries with high soaring effectiveness and minimal exhaustion of power. Several techniques have been introduced in recent years to develop programmable, biocompatible, and energy-efficient micro/nanobots. Therefore, the primary focus of most of these techniques is to develop hybrid micro/nanobots that are an optimized combination of purely synthetic or biodegradable bots suitable for the execution of user-defined tasks more precisely and efficiently. Recent progress has been illustrated here as an overview of a few of the achievable construction principles to be used to make biomedical micro/nanobots and explores the pivotal ventures of nanotechnology-moderated development of catalytic autonomous bots. Furthermore, it is also foregrounding their advancement offering an insight into the recent trends and subsequent prospects, opportunities, and challenges involved in the accomplishments of the effective multifarious bioengineering applications.


Assuntos
Nanoestruturas , Nanotecnologia , Nanotecnologia/métodos , Engenharia Biomédica , Sistemas de Liberação de Medicamentos/métodos , Bioengenharia
2.
ACS Omega ; 8(5): 5138, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36777571

RESUMO

[This corrects the article DOI: 10.1021/acsomega.2c03968.].

3.
Colloids Surf B Biointerfaces ; 222: 113054, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36446238

RESUMO

Biohybrid micro/nanobots have emerged as an innovative resource to be employed in the biomedical field due to their biocompatible and biodegradable properties. These are tiny nanomaterial-based integrated structures engineered in a way that they can move autonomously and perform the programmed tasks efficiently even at hard-to-reach organ/tissues/cellular sites. The biohybrid micro/nanobots can either be cell/bacterial/enzyme-based or may mimic the properties of an active molecule. It holds the potential to change the landscape in various areas of biomedical including early diagnosis of disease, therapeutics, imaging, or precision surgery. The propulsion mechanism of the biohybrid micro/nanobots can be both fuel-based and fuel-free, but the most effective and easiest way to propel these micro/nanobots is via enzymes. Micro/nanobots possess the feature to adsorb/functionalize chemicals or drugs at their surfaces thus offering the scope of delivering drugs at the targeted locations. They also have shown immense potential in intracellular sensing of biomolecules and molecular events. Moreover, with recent progress in the material development and processing is required for enhanced activity and robustness the fabrication is done via various advanced techniques to avoid self-degradation and cause cellular toxicity during autonomous movement in biological medium. In this review, various approaches of design, architecture, and performance of such micro/nanobots have been illustrated along with their potential applications in controlled cargo release, therapeutics, intracellular sensing, and bioimaging. Furthermore, it is also foregrounding their advancement offering an insight into their future scopes, opportunities, and challenges involved in advanced biomedical applications.


Assuntos
Nanoestruturas , Bactérias , Diagnóstico por Imagem
4.
ACS Omega ; 8(51): 49460-49466, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38162730

RESUMO

The prevalence of antibiotic-resistant bacterial infections demands effective alternative therapeutics of antibiotics, whereas biocompatible zero-dimensional nanomaterials are an excellent option due to their small size. In this study, we report the one-step hydrothermal approach that was used to synthesize luminescent manganese doped carbon dots (Mn-Cdots) with an efficient quantum yield of 9.2% by employing green Psidium guajava L. (Guava) leaf as the precursor. High-resolution microscopy TEM was used to investigate the average particle size of Mn-Cdots, which was found to be 2.9 ± 0.045 nm. The structural properties and elemental composition of Mn-Cdots were analyzed by FTIR, XRD, EPR, and XPS spectroscopy, and the optical properties of Mn-Cdots were examined by UV-visible and fluorescent spectroscopy. Light-mediated antibacterial activity of Mn-Cdots was investigated by Gram-negative bacteria E. coli under white, blue, and yellow light. The doping effect of a minute quantity of Mn in Mn-Cdots increased the level of ROS generation in the presence of white lights compared to Cdots. Thus, Mn-Cdots might act as potent antibacterial agents.

5.
ACS Omega ; 7(37): 33358-33364, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36157767

RESUMO

The need for antimicrobial or antibacterial fabric has increased exponentially in recent past years, especially after the outbreak of the SARS-CoV-2 pandemic. Several studies have been conducted, and the primary focus is the development of simple, automated, performance efficient and cost-efficient fabric for disposable and frequent-use items such as personal protective materials. In this regard, we have explored the light-driven antibacterial activity of water-soluble Sdots for the first time. Sdots are a new class of non-metallic quantum dots of the nanosulfur family having a polymeric sulfur core. These Sdots exhibited excellent antibacterial activity by generating reactive oxygen species under sunlight or visible light. Under 6 h of sunlight irradiation, it was observed that >90% of the bacterial growth was inhibited in the presence of Sdots. Furthermore, low toxic Sdots were employed to develop antibacterial fabric for efficiently cleaning the bacterial infection. The prominent zone of inhibition of up to 9 mm was observed post 12 h incubation of Sdots treated fabric with E. coli in the presence of visible light. Furthermore, the SEM study confirmed the bactericidal effect of these Sdots-treated fabrics. Moreover, this study might help explore the photocatalytic disinfection application of Sdots in diverse locations of interest, Sdots-based photodynamic antimicrobial chemotherapy application, and provide an opportunity to develop Sdots as a visible light photocatalyst for organic transformations and other promising applications.

6.
Biomed Mater ; 17(2)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35105823

RESUMO

Nearly 80% of human chronic infections are caused due to bacterial biofilm formation. This is the most leading cause for failure of medical implants resulting in high morbidity and mortality. In addition, biofilms are also known to cause serious problems in food industry. Biofilm impart enhanced antibiotic resistance and become recalcitrant to host immune responses leading to persistent and recurrent infections. It makes the clinical treatment for biofilm infections very difficult. Reduced penetration of antibiotic molecules through EPS, mutation of the target site, accumulation of antibiotic degrading enzymes, enhanced expression of efflux pump genes are the probable causes for antibiotics resistance. Accordingly, strategies like administration of topical antibiotics and combined therapy of antibiotics with antimicrobial peptides are considered for alternate options to overcome the antibiotics resistance. A number of other remediation strategies for both biofilm inhibition and dispersion of established biofilm have been developed. The metallic nanoparticles (NPs) and their oxides have recently gained a tremendous thrust as antibiofilm therapy for their unique features. This present comprehensive review gives the understanding of antibiotic resistance mechanisms of biofilm and provides an overview of various currently available biofilm remediation strategies, focusing primarily on the applications of metallic NPs and their oxides.


Assuntos
Infecções Bacterianas , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Resistência Microbiana a Medicamentos , Humanos
7.
J Environ Manage ; 297: 113322, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34325370

RESUMO

Biodegradable precursors for micro/nanobots development are key requirements for several sustainable applications. In this regard, we propose an innovative solution for water purification at minimum cost and efforts where organic waste is used for the treatment of organic pollutants. Herein, catalytic magnetic microbots were developed by functionalizing iron oxide nanoparticles with carbon dots (C-Dots), which were synthesized by using household waste such as potato peels as precursors. The speed of these autonomously propelling bots indeed is found very promising for large distance swimming even in viscous medium by using hydrogen peroxide as fuel. These microbots catalytically propel and degrade toxic polar as well as sparingly water-soluble industrial dyes without any external agitation. The degradation of dyes was confirmed by mass-spectra analysis. Furthermore, these microbots can efficiently degrade a mixture of dyes and reused without compromising its performance significantly. Additionally, rate constant (K) and activation energy (Ea) were also determined to establish the catalytic nature of the bots. The present microbots acted as nanozyme owing to its synergistic catalytic activity of Fe3O4 and C-Dots for degradation of mixture of toxic dyes, essential for large scale water treatment.


Assuntos
Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Purificação da Água , Carbono , Fenômenos Magnéticos , Poluentes Químicos da Água/análise
9.
J Environ Manage ; 281: 111750, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33434762

RESUMO

Autonomously propelled micro/nanobots are one of the most advanced and integrated structures which have been fascinated researchers owing to its exceptional property that enables them to be carried out user-defined tasks more precisely even on an atomic scale. The unique architecture and engineering aspects of these manmade tiny devices make them viable options for widespread biomedical applications. Moreover, recent development in this line of interest demonstrated that micro/nanobots would be very promising for the water treatment as these can efficiently absorb or degrade the toxic chemicals from the polluted water based on their tunable surface chemistry. These auto propelled micro/nanobots catalytically degrade toxic pollutants into non-hazardous compounds more rapidly and effectively. Thus, for the last few decades, nanobots mediated water treatment gaining huge popularity due to its ease of operation and scope of guided motion that could be monitored by various external fields and stimuli. Also, these are economical, energy-saving, and suitable for large scale water treatment, particularly required for industrial effluents. However, the efficacy of these bots hugely relies on its design, characteristic of materials, properties of the medium, types of fuel, and surface functional groups. Minute variation for one of these things may lead to a change in its performance and hinders its dynamics of propulsion. It is deemed that nanobots might be a smart choice for using these as the new generation devices for treating industrial effluents before discharging it in the water bodies, which is a major concern for human health and the environment.


Assuntos
Nanotecnologia , Água , Humanos
10.
Adv Exp Med Biol ; 1353: 23-45, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35137366

RESUMO

INTRODUCTION: After the outbreak from Wuhan City of China, COVID-19, caused by SARS-CoV-2, has become a pandemic worldwide in a very short span of time. The high transmission rate and pathogenicity of this virus have made COVID-19 a major public health concern globally. Basically, the emergence of SARS-CoV-2 is the third introduction of a highly infectious human epidemic coronavirus in the twenty-first century. Various research groups have claimed bats to be the natural host of SARS-CoV-2. However, the intermediate host and mode of transmission from bat to humans are not revealed yet. The COVID-19 cost hundreds and thousands of lives and millions are facing the consequences. The objective of this chapter was to analyze the outbreak of COVID-19 and problems faced globally. METHODS: All published relevant literature from scientific sources and reputed news channels are considered to write the current review. RESULTS: Generally, elder persons and more particularly people with underlying medical conditions are found to be highly vulnerable to severe infection and prone to fatal outcomes. Unfortunately, there is no specific treatment with clinically approved drugs or vaccines to treat this disease. Several research groups have been investigating the efficacies of several antiviral and repurposed drugs. Currently, most of the SARS-COV-2 vaccines are at the preclinical or clinical stage of development. The latest research progress on the epidemiology, clinical characteristics, pathogenesis, diagnosis, and current status of therapeutic intervention indicates that still a specific drug or vaccine needs to come up for the effective treatment of the pandemic COVID-19. It is observed that various aspects of social life, economic status, and healthcare systems are majorly affected by this pandemic. CONCLUSION: It is concluded that the outbreak of COVID-19 has severely affected each and every field, such as social, scientific, industrial, transport, and medical sectors. Irrespective of tremendous efforts globally, few vaccines are now available for the prevention of the disease. Specific drug is not available publicly for the treatment of COVID-19. Prevention of air pollution that can aggravate COVID-19 has been suggested. Therefore, as of now, social distancing and sanitization practices are the only options available for the prevention of the disease for many.


Assuntos
COVID-19 , Idoso , Vacinas contra COVID-19 , Surtos de Doenças , Humanos , Pandemias , SARS-CoV-2
11.
Nanotechnology ; 31(40): 405704, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498056

RESUMO

Microwave mediated synthesis of catalytic fluorescent carbon dots (Cdots) has been reported using biodegradable starch as precursor. The as-synthesized Cdots were then characterized using various techniques such as fluorescence spectroscopy, fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) analysis. Interestingly, Cdots showed high catalytic activity in the photo-reduction of Ag+ to silver nanoparticles (Ag NPs). During the photo-reduction process, no additional surface passivating agents was needed to stabilize the Ag NPs. Further, TEM results indicated the formation of Cdot-Ag NP nanocomposite i.e. Ag NPs surrounded with Cdots, and the emission intensity of Cdots was significantly decreased whereas the lifetime of Cdots remained almost unaltered in the presence of Ag NPs following static quenching. Finally, combination therapy of Cdots and Ag NPs using Cdot-Ag NP nanocomposite was performed which indicated synergistic bactericidal activity against antibiotic resistant recombinant E. coli bacteria. The treatment elevated the reactive oxygen species (ROS) level as compared to its individual components. Additionally, the flow cytometer study demonstrated that combination therapy causing bacterial cell wall perforation that was possibly leading to synergistic bactericidal activity against both Gram positive and Gram negative bacteria. The presence of Cdots on the surface of the Ag NPs due to their ground state complexation, possibly facilitated electrons towards Ag NPs which enhanced the ROS production in comparison to only Ag NPs.


Assuntos
Antibacterianos/farmacologia , Carbono/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Prata/farmacologia , Antibacterianos/química , Carbono/química , Catálise , Parede Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Nanopartículas Metálicas , Nanocompostos/química , Tamanho da Partícula , Pontos Quânticos , Prata/química
12.
Biotechnol Rep (Amst) ; 25: e00427, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32055457

RESUMO

Due to development of bacterial resistance to the conventional antibiotics, the treatment of bacterial infections has become a major issue of concern. The unprescribed and uncontrolled use of antibiotics has lead to the rapid development of antibiotic resistance in bacterial strains. Therefore, the development of novel and potent bactericidal agents is of great clinical importance. Interestingly, metallic nanoparticles (NPs) have been proven to be promising alternative to antibiotics. NPs interact with the important cellular organelles and biomolecules like DNA, enzymes, ribosomes, and lysosomes that can affect cell membrane permeability, oxidative stress, gene expression, protein activation, and enzyme activation. Since, NPs target multiple biomolecules concurrently; it becomes very difficult for bacteria to develop resistance against them. Currently, there are different physical and chemical methods utilized for NPs synthesis. However, most of these processes are costly and potentially hazardous for the living organisms and environment. Therefore, there is a need to develop an eco-friendly and cost-effective method of synthesis. Recently, the 'green synthesis' approaches are gaining a lot of attention. It is demonstrated that living organisms like bacteria, yeast, fungi, and plant cells can reduce inorganic metal ions into metal NPs by their cellular metabolites. Both the yield and stability of biogenic NPs are quite satisfactory. In the current article, we have addressed the green synthesis of various metal NPs reported till date and highlighted their different modes and mechanisms of antibacterial properties. It is highly anticipated that biogenic metallic NPs could be viable and economical alternatives for treating drug resistant bacterial infections in near future.

13.
Tissue Eng Regen Med ; 14(3): 187-200, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30603476

RESUMO

Solid freeform techniques are revolutionising technology with great potential to fabricate highly organized biodegradable scaffolds for damaged tissues and organs. Scaffolds fabricated via Solid freeform (SFF) techniques have more pronounced effect in bone tissue engineering. SFF techniques produce various types of scaffolds from different biomaterials with specific pore size, geometries, orientation, interconnectivity and anatomical shapes. Scaffolds needs to be designed from such biomaterials which can attach directly to natural tissues and mimic its properties, so ideally mechanical properties of scaffolds should be same as that of regenerating tissues for best results. The scaffolds designed without optimized mechanical properties would lead to the reduced nutrition diffusion within tissue engineered constructs (TECs) causing tissue necrosis. These scaffolds are mainly processed from ceramics and polymers like calcium phosphate, polydioxane, €-polycaprolactone, polylactic and polyglycolic acids etc. While, hydrogel scaffolds provide bridge for encapsulated cells and tissues to integrate with natural ECM. Likewise, 2D images from radiography were not sufficient for the prediction of the brain structure, cranial nerves, vessel and architecture of base of the skull and bones, which became possible using the 3D prototyping technologies. Any misrepresentation can lead to fatal outcomes. Biomodelling from these techniques for spinal surgery and preoperative planning are making its way toward successful treatment of several spinal deformities and spinal tumor. In this review we explored laser based and printing SFF techniques following its methodologies, principles and most recent areas of application with its achievements and possible challenges faced during its applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...