Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37050729

RESUMO

We demonstrate that the conductivity of graphene on thin-film polymer substrates can be accurately determined by reflection-mode air-plasma-based THz time-domain spectroscopy (THz-TDS). The phase uncertainty issue associated with reflection measurements is discussed, and our implementation is validated by convincing agreement with graphene electrical properties extracted from more conventional transmission-mode measurements. Both the reflection and transmission THz-TDS measurements reveal strong non-linear and instantaneous conductivity depletion across an ultra-broad bandwidth (1-9 THz) under relatively high incident THz electrical field strengths (up to 1050 kV/cm).

2.
ACS Omega ; 7(26): 22626-22632, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811885

RESUMO

The purity and morphology of the copper surface is important for the synthesis of high-quality, large-grained graphene by chemical vapor deposition. We find that atomically smooth copper foils-fabricated by physical vapor deposition and subsequent electroplating of copper on silicon wafer templates-exhibit strongly reduced surface roughness after the annealing of the copper catalyst, and correspondingly lower nucleation and defect density of the graphene film, when compared to commercial cold-rolled copper foils. The "ultrafoils"-ultraflat foils-facilitate easier dry pickup and encapsulation of graphene by hexagonal boron nitride, which we believe is due to the lower roughness of the catalyst surface promoting a conformal interface and subsequent stronger van der Waals adhesion between graphene and hexagonal boron nitride.

3.
ACS Appl Mater Interfaces ; 11(51): 48518-48524, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31797664

RESUMO

The correlation between the crystal structure of chemical vapor deposition (CVD)-grown graphene and the crystal structure of the Cu growth substrate and their mutual effect on the oxidation of the underlying Cu are systematically explored. We report that natural oxygen or water intercalation along the graphene-Cu interface results in an orientation-dependent oxidation rate of the Cu surface, particularly noticeable for bicrystal graphene domains on the same copper grain, suggesting that the relative crystal orientation of subgrains determines the degree of Cu oxidation. Atomistic force field calculations support these observations, showing that graphene domains have preferential alignment with the Cu(111) with a smaller average height above the global Cu surface as compared to intermediate orientations, and that this is the origin of the heterogeneous oxidation rate of Cu. This work demonstrates that the natural oxidation resistance of Cu coated by graphene is highly dependent on the crystal orientation and lattice alignment of Cu and graphene, which is key information for engineering the interface configuration of the graphene-Cu system for specific functionalities in mechanical, anticorrosion, and electrical applications of CVD-grown graphene.

4.
Small ; 15(50): e1904906, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31668009

RESUMO

The adoption of graphene in electronics, optoelectronics, and photonics is hindered by the difficulty in obtaining high-quality material on technologically relevant substrates, over wafer-scale sizes, and with metal contamination levels compatible with industrial requirements. To date, the direct growth of graphene on insulating substrates has proved to be challenging, usually requiring metal-catalysts or yielding defective graphene. In this work, a metal-free approach implemented in commercially available reactors to obtain high-quality monolayer graphene on c-plane sapphire substrates via chemical vapor deposition is demonstrated. Low energy electron diffraction, low energy electron microscopy, and scanning tunneling microscopy measurements identify the Al-rich reconstruction 31 × 31 R ± 9 ° of sapphire to be crucial for obtaining epitaxial graphene. Raman spectroscopy and electrical transport measurements reveal high-quality graphene with mobilities consistently above 2000 cm2 V-1 s-1 . The process is scaled up to 4 and 6 in. wafers sizes and metal contamination levels are retrieved to be within the limits for back-end-of-line integration. The growth process introduced here establishes a method for the synthesis of wafer-scale graphene films on a technologically viable basis.

5.
Nat Commun ; 10(1): 2957, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273207

RESUMO

Only a few of the vast range of potential two-dimensional materials (2D) have been isolated or synthesised to date. Typically, 2D materials are discovered by mechanically exfoliating naturally occurring bulk crystals to produce atomically thin layers, after which a material-specific vapour synthesis method must be developed to grow interesting candidates in a scalable manner. Here we show a general approach for synthesising thin layers of two-dimensional binary compounds. We apply the method to obtain high quality, epitaxial MoS2 films, and extend the principle to the synthesis of a wide range of other materials-both well-known and never-before isolated-including transition metal sulphides, selenides, tellurides, and nitrides. This approach greatly simplifies the synthesis of currently known materials, and provides a general framework for synthesising both predicted and unexpected new 2D compounds.

6.
Nano Lett ; 18(9): 5913-5918, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30114919

RESUMO

Despite its great potential for a wide variety of devices, especially mid-infrared biosensors and photodetectors, graphene plasmonics is still confined to academic research. A major reason is the fact that, so far, expensive and low-throughput lithography techniques are needed to fabricate graphene nanostructures. Here, we report for the first time a detailed experimental study on electrostatically tunable graphene nanohole array surfaces with periods down to 100 nm, showing clear plasmonic response in the range ∼1300-1600 cm-1, which can be fabricated by a scalable nanoimprint technique. Such large area plasmonic nanostructures are suitable for industrial applications, for example, surface-enhanced infrared absorption (SEIRA) sensing, as they combine easy design, extreme field confinement, and the possibility to excite multiple plasmon modes enabling multiband sensing, a feature not readily available in nanoribbons or other localized resonant structures.

7.
Sci Rep ; 7(1): 6183, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28733662

RESUMO

The processes governing multilayer nucleation in the chemical vapour deposition (CVD) of graphene are important for obtaining high-quality monolayer sheets, but remain poorly understood. Here we show that higher-order carbon species in the gas-phase play a major role in multilayer nucleation, through the use of in-situ ultraviolet (UV) absorption spectroscopy. These species are the volatilized products of reactions between hydrogen and carbon contaminants that have backstreamed into the reaction chamber from downstream system components. Consequently, we observe a dramatic suppression of multilayer nucleation when backstreaming is suppressed. These results point to an important and previously undescribed mechanism for multilayer nucleation, wherein higher-order gas-phase carbon species play an integral role. Our work highlights the importance of gas-phase dynamics in understanding the overall mechanism of graphene growth.

8.
PLoS One ; 12(6): e0178355, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28570647

RESUMO

We investigated toxicity of 2-3 layered >1 µm sized graphene oxide (GO) and reduced graphene oxide (rGO) in mice following single intratracheal exposure with respect to pulmonary inflammation, acute phase response (biomarker for risk of cardiovascular disease) and genotoxicity. In addition, we assessed exposure levels of particulate matter emitted during production of graphene in a clean room and in a normal industrial environment using chemical vapour deposition. Toxicity was evaluated at day 1, 3, 28 and 90 days (18, 54 and 162 µg/mouse), except for GO exposed mice at day 28 and 90 where only the lowest dose was evaluated. GO induced a strong acute inflammatory response together with a pulmonary (Serum-Amyloid A, Saa3) and hepatic (Saa1) acute phase response. rGO induced less acute, but a constant and prolonged inflammation up to day 90. Lung histopathology showed particle agglomerates at day 90 without signs of fibrosis. In addition, DNA damage in BAL cells was observed across time points and doses for both GO and rGO. In conclusion, pulmonary exposure to GO and rGO induced inflammation, acute phase response and genotoxicity but no fibrosis.


Assuntos
Reação de Fase Aguda , Grafite/toxicidade , Inflamação/patologia , Pulmão/efeitos dos fármacos , Mutagênicos/toxicidade , Animais , Líquido da Lavagem Broncoalveolar , Feminino , Grafite/química , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Óxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...