Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(23): 5353-5359, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37267598

RESUMO

We measure the quantum efficiency (QE) of individual dibenzoterrylene (DBT) molecules embedded in p-dichlorobenzene at cryogenic temperatures. To achieve this, we combine two distinct methods based on the maximal photon emission and on the power required to saturate the zero-phonon line to compensate for uncertainties in some key system parameters. We find that the outcomes of the two approaches are in good agreement for reasonable values of the parameters involved, reporting a large fraction of molecules with QE values above 50%, with some exceeding 70%. Furthermore, we observe no correlation between the observed lower bound on the QE and the lifetime of the molecule, suggesting that most of the molecules have a QE exceeding the established lower bound. This confirms the suitability of DBT for quantum optics experiments. In light of previous reports of low QE values at ambient conditions, our results hint at the possibility of a strong temperature dependence of the QE.

2.
J Chem Phys ; 156(10): 104301, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35291792

RESUMO

Vibrational levels of the electronic ground states in dye molecules have not been previously explored at a high resolution in solid matrices. We present new spectroscopic measurements on single polycyclic aromatic molecules of dibenzoterrylene embedded in an organic crystal made of para-dichlorobenzene. To do this, we use narrow-band continuous-wave lasers and combine spectroscopy methods based on fluorescence excitation and stimulated emission depletion to assess individual vibrational linewidths in the electronic ground state at a resolution of ∼30 MHz dictated by the linewidth of the electronic excited state. In this fashion, we identify several exceptionally narrow vibronic levels with linewidths down to values around 2 GHz. Additionally, we sample the distribution of vibronic wavenumbers, relaxation rates, and Franck-Condon factors, in both the electronic ground and excited states for a handful of individual molecules. We discuss various noteworthy experimental findings and compare them with the outcome of density functional theory calculations. The highly detailed vibronic spectra obtained in our work pave the way for studying the nanoscopic local environment of single molecules. The approach also provides an improved understanding of the vibrational relaxation mechanisms in the electronic ground state, which may help create long-lived vibrational states for applications in quantum technology.

3.
Phys Rev Lett ; 126(13): 133602, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33861100

RESUMO

We present efficient evanescent coupling of single organic molecules to a gallium phosphide (GaP) subwavelength waveguide (nanoguide) decorated with microelectrodes. By monitoring their Stark shifts, we reveal that the coupled molecules experience fluctuating electric fields. We analyze the spectral dynamics of different molecules over a large range of optical powers in the nanoguide to show that these fluctuations are light-induced and local. A simple model is developed to explain our observations based on the optical activation of charges at an estimated mean density of 2.5×10^{22} m^{-3} in the GaP nanostructure. Our work showcases the potential of organic molecules as nanoscopic sensors of the electric charge as well as the use of GaP nanostructures for integrated quantum photonics.

4.
Opt Express ; 29(7): 11070-11083, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820226

RESUMO

We introduce an image transform designed to highlight features with high degree of radial symmetry for identification and subpixel localization of particles in microscopy images. The transform is based on analyzing pixel value variations in radial and angular directions. We compare the subpixel localization performance of this algorithm to other common methods based on radial or mirror symmetry (such as fast radial symmetry transform, orientation alignment transform, XCorr, and quadrant interpolation), using both synthetic and experimentally obtained data. We find that in all cases it achieves the same or lower localization error, frequently reaching the theoretical limit.

5.
Nano Lett ; 20(10): 7213-7219, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32786953

RESUMO

We studied the rotational and translational diffusion of a single gold nanorod linked to a supported lipid bilayer with ultrahigh temporal resolution of two microseconds. By using a home-built polarization-sensitive dark-field microscope, we recorded particle trajectories with lateral precision of 3 nm and rotational precision of 4°. The large number of trajectory points in our measurements allows us to characterize the statistics of rotational diffusion with unprecedented detail. Our data show apparent signatures of anomalous diffusion such as sublinear scaling of the mean-squared angular displacement and negative values of angular correlation function at small lag times. However, a careful analysis reveals that these effects stem from the residual noise contributions and confirms normal diffusion. Our experimental approach and observations can be extended to investigate diffusive processes of anisotropic nanoparticles in other fundamental systems such as cellular membranes or other two-dimensional fluids.


Assuntos
Bicamadas Lipídicas , Nanotubos , Membrana Celular , Difusão , Ouro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...