Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(22): 5589-5594, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28507154

RESUMO

Individual behavior, in biology, economics, and computer science, is often described in terms of balancing exploration and exploitation. Foraging has been a canonical setting for studying reward seeking and information gathering, from bacteria to humans, mostly focusing on individual behavior. Inspired by the gradient-climbing nature of chemotaxis, the infotaxis algorithm showed that locally maximizing the expected information gain leads to efficient and ethological individual foraging. In nature, as well as in theoretical settings, conspecifics can be a valuable source of information about the environment. Whereas the nature and role of interactions between animals have been studied extensively, the design principles of information processing in such groups are mostly unknown. We present an algorithm for group foraging, which we term "socialtaxis," that unifies infotaxis and social interactions, where each individual in the group simultaneously maximizes its own sensory information and a social information term. Surprisingly, we show that when individuals aim to increase their information diversity, efficient collective behavior emerges in groups of opportunistic agents, which is comparable to the optimal group behavior. Importantly, we show the high efficiency of biologically plausible socialtaxis settings, where agents share little or no information and rely on simple computations to infer information from the behavior of their conspecifics. Moreover, socialtaxis does not require parameter tuning and is highly robust to sensory and behavioral noise. We use socialtaxis to predict distinct optimal couplings in groups of selfish vs. altruistic agents, reflecting how it can be naturally extended to study social dynamics and collective computation in general settings.


Assuntos
Comportamento Exploratório/fisiologia , Comportamento Alimentar/fisiologia , Comportamento de Busca de Informação/fisiologia , Algoritmos , Humanos , Comportamento Social
2.
Interface Focus ; 2(6): 786-98, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24312731

RESUMO

Much effort has been devoted to the study of swarming and collective navigation of micro-organisms, insects, fish, birds and other organisms, as well as multi-agent simulations and to the study of real robots. It is well known that insect swarms can carry cargo. The studies here are motivated by a less well-known phenomenon: cargo transport by bacteria swarms. We begin with a concise review of how bacteria swarms carry natural, micrometre-scale objects larger than the bacteria (e.g. fungal spores) as well as man-made beads and capsules (for drug delivery). A comparison of the trajectories of virtual beads in simulations (using different putative coupling between the virtual beads and the bacteria) with the observed trajectories of transported fungal spores implies the existence of adaptable coupling. Motivated by these observations, we devised new, multi-agent-based studies of cargo transport by agent swarms. As a first step, we extended previous modelling of collective navigation of simple bacteria-inspired agents in complex terrain, using three putative models of agent-cargo coupling. We found that cargo-carrying swarms can navigate efficiently in a complex landscape. We further investigated how the stability, elasticity and other features of agent-cargo bonds influence the collective motion and the transport of the cargo, and found sharp phase shifts and dual successful strategies for cargo delivery. Further understanding of such mechanisms may provide valuable clues to understand cargo-transport by smart swarms of other organisms as well as by man-made swarming robots.

3.
PLoS Comput Biol ; 7(9): e1002177, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21980274

RESUMO

Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment--by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots.


Assuntos
Fenômenos Fisiológicos Bacterianos , Simulação por Computador , Interações Microbianas/fisiologia , Modelos Biológicos , Adaptação Fisiológica , Biologia Computacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...