Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1349275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487271

RESUMO

How complex morphologies evolve is one of the central questions in evolutionary biology. Observing the morphogenetic events that occur during development provides a unique perspective on the origins and diversification of morphological novelty. One can trace the tissue of origin, emergence, and even regression of structures to resolve murky homology relationships between species. Here, we trace the developmental events that shape some of the most diverse organs in the animal kingdom-the male terminalia (genitalia and analia) of Drosophilids. Male genitalia are known for their rapid evolution with closely related species of the Drosophila genus demonstrating vast variation in their reproductive morphology. We used confocal microscopy to monitor terminalia development during metamorphosis in twelve related species of Drosophila. From this comprehensive dataset, we propose a new staging scheme for pupal terminalia development based on shared developmental landmarks, which allows one to align developmental time points between species. We were able to trace the origin of different substructures, find new morphologies and suggest possible homology of certain substructures. Additionally, we demonstrate that posterior lobe is likely originated prior to the split between the Drosophila melanogaster and the Drosophila yakuba clade. Our dataset opens up many new directions of research and provides an entry point for future studies of the Drosophila male terminalia evolution and development.

2.
NPJ Parkinsons Dis ; 10(1): 38, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374278

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease with both genetic and sporadic origins. In this study, we investigated the electrophysiological properties, synaptic activity, and gene expression differences in dopaminergic (DA) neurons derived from induced pluripotent stem cells (iPSCs) of healthy controls, sporadic PD (sPD) patients, and PD patients with E326K-GBA1 mutations. Our results demonstrate reduced sodium currents and synaptic activity in DA neurons derived from PD patients with E326K-GBA1 mutations, suggesting a potential contribution to PD pathophysiology. We also observed distinct electrophysiological alterations in sPD DA neurons, which included a decrease in synaptic currents. RNA sequencing analysis revealed unique dysregulated pathways in sPD neurons and E326K-GBA1 neurons, further supporting the notion that molecular mechanisms driving PD may differ between PD patients. In agreement with our previous reports, Extracellular matrix and Focal adhesion pathways were among the top dysregulated pathways in DA neurons from sPD patients and from patients with E326K-GBA1 mutations. Overall, our study further confirms that impaired synaptic activity is a convergent functional phenotype in DA neurons derived from PD patients across multiple genetic mutations as well as sPD. At the transcriptome level, we find that the brain extracellular matrix is highly involved in PD pathology across multiple PD-associated mutations as well as sPD.

3.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37561584

RESUMO

Biological aging can be described as accumulative, prolonged metabolic stress and is the major risk factor for cognitive decline and Alzheimer's disease (AD). Recently, we identified and described a quinone reductase 2 (QR2) pathway in the brain, in which QR2 acts as a removable memory constraint and metabolic buffer within neurons. QR2 becomes overexpressed with age, and it is possibly a novel contributing factor to age-related metabolic stress and cognitive deficit. We found that, in human cells, genetic removal of QR2 produced a shift in the proteome opposing that found in AD brains while simultaneously reducing oxidative stress. We therefore created highly specific QR2 inhibitors (QR2is) to enable evaluation of chronic QR2 inhibition as a means to reduce biological age-related metabolic stress and cognitive decline. QR2is replicated results obtained by genetic removal of QR2, while local QR2i microinjection improved hippocampal and cortical-dependent learning in rats and mice. Continuous consumption of QR2is in drinking water improved cognition and reduced pathology in the brains of AD-model mice (5xFAD), with a noticeable between-sex effect on treatment duration. These results demonstrate the importance of QR2 activity and pathway function in the healthy and neurodegenerative brain and what we believe to be the great therapeutic potential of QR2is as first-in-class drugs.


Assuntos
Doença de Alzheimer , Quinona Redutases , Animais , Humanos , Camundongos , Ratos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Hipocampo/metabolismo , Estresse Oxidativo , Quinona Redutases/antagonistas & inibidores , Quinona Redutases/genética , Quinona Redutases/metabolismo , Estresse Fisiológico
4.
Cell Metab ; 35(8): 1441-1456.e9, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37494932

RESUMO

This study reveals a previously uncharacterized mechanism to restrict intestinal inflammation via a regulatory RNA transcribed from a noncoding genomic locus. We identified a novel transcript of the lncRNA HOXA11os specifically expressed in the distal colon that is reduced to undetectable levels in colitis. HOXA11os is localized to mitochondria under basal conditions and interacts with a core subunit of complex 1 of the electron transport chain (ETC) to maintain its activity. Deficiency of HOXA11os in colonic myeloid cells results in complex I deficiency, dysfunctional oxidative phosphorylation (OXPHOS), and the production of mitochondrial reactive oxygen species (mtROS). As a result, HOXA11os-deficient mice develop spontaneous intestinal inflammation and are hypersusceptible to colitis. Collectively, these studies identify a new regulatory axis whereby a lncRNA maintains intestinal homeostasis and restricts inflammation in the colon through the regulation of complex I activity.


Assuntos
Colite , RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Colite/genética , Colite/metabolismo , Inflamação/metabolismo , Mitocôndrias/genética , Homeostase , Mucosa Intestinal/metabolismo
5.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047823

RESUMO

A complex DNA repair network maintains genome integrity and genetic stability. In this study, the influence of edaphic factors on DNA damage and repair in wild wheat Triticum dicoccoides was addressed. Plants inhabiting two abutting microsites with dry terra rossa and humid basalt soils were studied. The relative expression level of seven genes involved in DNA repair pathways-RAD51, BRCA1, LigIV, KU70, MLH1, MSH2, and MRE11-was assessed using quantitative real-time PCR (qPCR). Immunolocalization of RAD51, LigIV, γH2AX, RNA Polymerase II, and DNA-RNA hybrid [S9.6] (R-loops) in somatic interphase nuclei and metaphase chromosomes was carried out in parallel. The results showed a lower expression level of genes involved in DNA repair and a higher number of DNA double-strand breaks (DSBs) in interphase nuclei in plants growing in terra rossa soil compared with plants in basalt soil. Further, the number of DSBs and R-loops in metaphase chromosomes was also greater in plants growing on terra rossa soil. Finally, RAD51 and LigIV foci on chromosomes indicate ongoing DSB repair during the M-phase via the Homologous Recombination and Non-Homologous End Joining pathways. Together, these results show the impact of edaphic factors on DNA damage and repair in the wheat genome adapted to contrasting environments.


Assuntos
Poaceae , Triticum , Triticum/genética , Triticum/metabolismo , Poaceae/genética , Dano ao DNA , Reparo do DNA , DNA/metabolismo , Rad51 Recombinase/genética , Reparo do DNA por Junção de Extremidades
6.
Bio Protoc ; 13(6): e4637, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36968443

RESUMO

Phagoptosis is a prevalent type of programmed cell death (PCD) in adult tissues in which phagocytes non-autonomously eliminate viable cells. Therefore, phagoptosis can only be studied in the context of the entire tissue that includes both the phagocyte executors and the targeted cells doomed to die. Here, we describe an ex vivo live imaging protocol of Drosophila testis to study the dynamics of phagoptosis of germ cell progenitors that are spontaneously removed by neighboring cyst cells. Using this approach, we followed the pattern of exogenous fluorophores with endogenously expressed fluorescent proteins and revealed the sequence of events in germ cell phagoptosis. Although optimized for Drosophila testis, this easy-to-use protocol can be adapted to a wide variety of organisms, tissues, and probes, thus providing a reliable and simple means to study phagoptosis.

7.
Cell Death Discov ; 9(1): 90, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898998

RESUMO

Glial phagocytosis of apoptotic neurons is crucial for development and proper function of the central nervous system. Relying on transmembrane receptors located on their protrusions, phagocytic glia recognize and engulf apoptotic debris. Like vertebrate microglia, Drosophila phagocytic glial cells form an elaborate network in the developing brain to reach and remove apoptotic neurons. However, the mechanisms controlling creation of the branched morphology of these glial cells critical for their phagocytic ability remain unknown. Here, we demonstrate that during early embryogenesis, the Drosophila fibroblast growth factor receptor (FGFR) Heartless (Htl) and its ligand Pyramus are essential in glial cells for the formation of glial extensions, the presence of which strongly affects glial phagocytosis of apoptotic neurons during later stages of embryonic development. Reduction in Htl pathway activity results in shorter lengths and lower complexity of glial branches, thereby disrupting the glial network. Our work thus illuminates the important role Htl signaling plays in glial subcellular morphogenesis and in establishing glial phagocytic ability.

8.
Sci Adv ; 8(24): eabm4937, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35714186

RESUMO

Phagoptosis is a frequently occurring nonautonomous cell death pathway in which phagocytes eliminate viable cells. While it is thought that phosphatidylserine (PS) "eat-me" signals on target cells initiate the process, the precise sequence of events is largely unknown. Here, we show that in Drosophila testes, progenitor germ cells are spontaneously removed by neighboring cyst cells through phagoptosis. Using live imaging with multiple markers, we demonstrate that cyst cell-derived early/late endosomes and lysosomes fused around live progenitors to acidify them, before DNA fragmentation and substantial PS exposure on the germ cell surface. Furthermore, the phagocytic receptor Draper is expressed on cyst cell membranes and is necessary for phagoptosis. Significantly, germ cell death is blocked by knockdown of either the endosomal component Rab5 or the lysosomal associated protein Lamp1, within the cyst cells. These data ascribe an active role for phagocytic cyst cells in removal of live germ cell progenitors.


Assuntos
Cistos , Proteínas de Drosophila , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Germinativas/metabolismo , Masculino , Fagócitos , Fagocitose/genética , Testículo/metabolismo
9.
Cell Rep ; 29(6): 1438-1448.e3, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693886

RESUMO

Glial phagocytosis is critical for the development and maintenance of the CNS in vertebrates and flies and relies on the function of phagocytic receptors to remove apoptotic cells and debris. Glial phagocytic ability declines with age, which correlates with neuronal dysfunction, suggesting that increased glial phagocytosis may prevent neurodegeneration. Contradicting this hypothesis, we provide experimental evidence showing that an elevated expression of the phagocytic receptors Six-Microns-Under (SIMU) and Draper (Drpr) in adult Drosophila glia leads to a loss of both dopaminergic and GABAergic neurons, accompanied by motor dysfunction and a shortened lifespan. Importantly, this reduction in neuronal number is not linked to neuronal apoptosis, but rather to phosphatidylserine-mediated phagoptosis of live neurons by hyper-phagocytic glia. Altogether, our study reveals that the level of glial phagocytic receptors must be tightly regulated for proper brain function and that neurodegeneration occurs not only by defective, but also excessive glial cell function.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Neurônios GABAérgicos/fisiologia , Proteínas de Membrana/metabolismo , Neuroglia/metabolismo , Fagocitose/genética , Animais , Apoptose/genética , Apoptose/fisiologia , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Drosophila/genética , Drosophila/fisiologia , Proteínas de Drosophila/genética , Longevidade/genética , Longevidade/fisiologia , Proteínas de Membrana/genética , Transtornos Motores/genética , Transtornos Motores/metabolismo , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/metabolismo , Neuroglia/citologia , Neuroglia/patologia , Fagocitose/fisiologia , Fosfatidilserinas/metabolismo
10.
Front Immunol ; 9: 266, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29568295

RESUMO

During Drosophila embryogenesis, a large number of apoptotic cells are efficiently engulfed and degraded by professional phagocytes, macrophages. Phagocytic receptors Six-Microns-Under (SIMU), Draper (Drpr) and Croquemort (Crq) are specifically expressed in embryonic macrophages and required for their phagocytic function. However, how this function is established during development remains unclear. Here we demonstrate that the key regulator of Drosophila embryonic hemocyte differentiation, the transcription factor Serpent (Srp), plays a central role in establishing macrophage phagocytic competence. Srp, a homolog of the mammalian GATA factors, is required and sufficient for the specific expression of SIMU, Drpr and Crq receptors in embryonic macrophages. Moreover, we show that each of these receptors can significantly rescue phagocytosis defects of macrophages in srp mutants, including their distribution in the embryo and engulfment of apoptotic cells. This reveals that the proficiency of macrophages to remove apoptotic cells relies on the expression of SIMU, Crq and/or Drpr. However, Glial Cells Missing (GCM) acting downstream of Srp in the differentiation of hemocytes, is dispensable for their phagocytic function during embryogenesis. Taken together, our study discloses the molecular mechanism underlying the development of macrophages as skilled phagocytes of apoptotic cells.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Desenvolvimento Embrionário/fisiologia , Fatores de Transcrição GATA/metabolismo , Macrófagos/metabolismo , Fagocitose/fisiologia , Animais , Embrião não Mamífero
11.
J Cell Biol ; 217(2): 571-583, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29196461

RESUMO

Although there is abundant evidence that individual microRNA (miRNA) loci repress large cohorts of targets, large-scale knockout studies suggest that most miRNAs are phenotypically dispensable. Here, we identify a rare case of developmental cell specification that is highly dependent on miRNA control of an individual target. We observe that binary cell fate choice in the Drosophila melanogaster peripheral sensory organ lineage is controlled by the non-neuronally expressed mir-279/996 cluster, with a majority of notum sensory organs exhibiting transformation of sheath cells into ectopic neurons. The mir-279/996 defect phenocopies Notch loss of function during the sheath-neuron cell fate decision, suggesting the miRNAs facilitate Notch signaling. Consistent with this, mir-279/996 knockouts are strongly enhanced by Notch heterozygosity, and activated nuclear Notch is impaired in the miRNA mutant. Although Hairless (H) is the canonical nuclear Notch pathway inhibitor, and H heterozygotes exhibit bristle cell fate phenotypes reflecting gain-of-Notch signaling, H/+ does not rescue mir-279/996 mutants. Instead, we identify Insensible (Insb), another neural nuclear Notch pathway inhibitor, as a critical direct miR-279/996 target. Insb is posttranscriptionally restricted to neurons by these miRNAs, and its heterozygosity strongly suppresses ectopic peripheral nervous system neurons in mir-279/996 mutants. Thus, proper assembly of multicellular mechanosensory organs requires a double-negative circuit involving miRNA-mediated suppression of a Notch repressor to assign non-neuronal cell fate.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , MicroRNAs/metabolismo , Receptores Notch/metabolismo , Animais
12.
Methods Mol Biol ; 1254: 359-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25431078

RESUMO

During central nervous system (CNS ) development, a large number of neurons die by apoptosis and are efficiently removed through phagocytosis. Since apoptosis and apoptotic cell clearance are highly conserved in evolution, relatively simple and easily accessible Drosophila embryonic CNS provides a good model to study molecular and cellular mechanisms of these processes. Here, we describe how to assess neuronal apoptosis and glial phagocytosis of apoptotic neurons using immunohistochemistry of whole fixed embryos and live imaging of developing embryonic CNS. Combination of these different strategies allows a comprehensive analysis of neuronal cell death in vivo.


Assuntos
Morte Celular/genética , Neurônios/metabolismo , Fagocitose/genética , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Drosophila , Biologia Molecular/métodos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/patologia
13.
Dev Biol ; 393(2): 255-269, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25046770

RESUMO

The proper removal of superfluous neurons through apoptosis and subsequent phagocytosis is essential for normal development of the central nervous system (CNS). During Drosophila embryogenesis, a large number of apoptotic neurons are efficiently engulfed and degraded by phagocytic glia. Here we demonstrate that glial proficiency to phagocytose relies on expression of phagocytic receptors for apoptotic cells, SIMU and DRPR. Moreover, we reveal that the phagocytic ability of embryonic glia is established as part of a developmental program responsible for glial cell fate determination and is not triggered by apoptosis per se. Explicitly, we provide evidence for a critical role of the major regulators of glial identity, gcm and repo, in controlling glial phagocytic function through regulation of SIMU and DRPR specific expression. Taken together, our study uncovers molecular mechanisms essential for establishment of embryonic glia as primary phagocytes during CNS development.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila/embriologia , Proteínas de Homeodomínio/genética , Neuroglia/fisiologia , Fagocitose/genética , Fatores de Transcrição/genética , Animais , Apoptose , Sítios de Ligação/genética , Caspase 3/biossíntese , Sistema Nervoso Central/embriologia , Proteínas de Drosophila/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Macrófagos/fisiologia , Proteínas de Membrana/biossíntese , Neuropeptídeos/genética , Fagocitose/fisiologia , Regiões Promotoras Genéticas
14.
J Vis Exp ; (78)2013 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-23979068

RESUMO

The proper elimination of unwanted or aberrant cells through apoptosis and subsequent phagocytosis (apoptotic cell clearance) is crucial for normal development in all metazoan organisms. Apoptotic cell clearance is a highly dynamic process intimately associated with cell death; unengulfed apoptotic cells are barely seen in vivo under normal conditions. In order to understand the different steps of apoptotic cell clearance and to compare 'professional' phagocytes--macrophages and dendritic cells to 'non-professional'--tissue-resident neighboring cells, in vivo live imaging of the process is extremely valuable. Here we describe a protocol for studying apoptotic cell clearance in live Drosophila embryos. To follow the dynamics of different steps in phagocytosis we use specific markers for apoptotic cells and phagocytes. In addition, we can monitor two phagocyte systems in parallel: 'professional' macrophages and 'semi-professional' glia in the developing central nervous system (CNS). The method described here employs the Drosophila embryo as an excellent model for real time studies of apoptotic cell clearance.


Assuntos
Drosophila/embriologia , Microscopia Confocal/métodos , Animais , Apoptose/fisiologia , Drosophila/citologia
15.
Mol Cell Biol ; 33(16): 3191-201, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23754750

RESUMO

Clearance of apoptotic cells by phagocytic neighbors is crucial for normal development of multicellular organisms. However, how phagocytes discriminate between healthy and dying cells remains poorly understood. We focus on glial phagocytosis of apoptotic neurons during development of the Drosophila central nervous system. We identified phosphatidylserine (PS) as a ligand on apoptotic cells for the phagocytic receptor Six Microns Under (SIMU) and report that PS alone is not sufficient for engulfment. Our data reveal that, additionally to PS exposure, caspase activity is required for clearance of apoptotic cells by phagocytes. Here we demonstrate that SIMU recognizes and binds PS on apoptotic cells through its N-terminal EMILIN (EMI), Nimrod 1 (NIM1), and NIM2 repeats, whereas the C-terminal NIM3 and NIM4 repeats control SIMU affinity to PS. Based on the structure-function analysis of SIMU, we discovered a novel mechanism of internal inhibition responsible for differential affinities of SIMU to its ligand which might prevent elimination of living cells exposing PS on their surfaces.


Assuntos
Apoptose , Caspases/metabolismo , Drosophila/enzimologia , Fagocitose , Animais , Sistema Nervoso Central/citologia , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/enzimologia , Drosophila/citologia , Drosophila/embriologia , Proteínas de Drosophila/análise , Proteínas de Drosophila/metabolismo , Ativação Enzimática , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Fosfatidilserinas/metabolismo , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...